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APPLICATIONS OF DIFFERENTIATION

The methods we have learned in this
chapter for finding extreme values have
practical applications in many areas of life.

 A businessperson wants to minimize costs and
maximize profits.

 A traveler wants to minimize transportation time.
 Fermat’s Principle in optics states that light follows

the path that takes the least time.



4.7
Optimization Problems

In this section, we will learn:

How to solve problems involving

maximization and minimization of factors.

APPLICATIONS OF DIFFERENTIATION



In this section (and the next), we solve
such problems as:

 Maximizing areas, volumes, and profits

 Minimizing distances, times, and costs

OPTIMIZATION PROBLEMS



OPTIMIZATION PROBLEMS

In solving such practical problems, the
greatest challenge is often to convert the word
problem into a mathematical optimization
problem—by setting up the function that is
to be maximized or minimized.



OPTIMIZATION PROBLEMS

Let’s recall the problem-solving
principles discussed in Chapter 1 and
adapt them to this situation.



Thus, there are six steps involved in
solving optimization problems.

These are as follows.

STEPS IN SOLVING OPTIMIZATION PROBLEMS



1. UNDERSTAND THE PROBLEM

Read the problem carefully until it is
clearly understood.

Ask yourself:
 What is the unknown?
 What are the given quantities?
 What are the given conditions?



2. DRAW A DIAGRAM

In most problems, it is useful to draw
a diagram and identify the given and
required quantities on the diagram.



3. INTRODUCE NOTATION

Assign a symbol to the quantity that
is to be maximized or minimized.

 Let’s call it Q for now.



Also, select symbols (a, b, c, . . . , x, y)
for other unknown quantities and label
the diagram with these symbols.

 It may help to use initials as suggestive symbols.

 Some examples are: A for area, h for height,
and t for time.

3. INTRODUCE NOTATION



4. EXPRESS Q IN TERMS OF THE VARIABLES

Express Q in terms of
some of the other symbols
from Step 3.



5. EXPRESS Q IN TERMS OF ONE VARIABLE

If Q has been expressed as a function of
more than one variable in Step 4, use the
given information to find relationships—in the
form of equations—among these variables.

Then, use the equations to eliminate all but
one variable in the expression for Q.



Thus, Q will be expressed as
a function of one variable x, say,
Q = f(x).

 Write the domain of this function.

5. EXPRESS Q IN TERMS OF ONE VARIABLE



Use the methods of Sections 4.1 and 4.3
to find the absolute maximum or minimum
value of f.

 In particular, if the domain of f is a closed interval,
then the Closed Interval Method in Section 4.1
can be used.

6. FIND THE ABSOLUTE MAX./MIN. VALUE OF f



OPTIMIZATION PROBLEMS

A farmer has 2400 ft of fencing and wants
to fence off a rectangular field that borders
a straight river. He needs no fence along
the river.

 What are the dimensions of the field that
has the largest area?

Example 1



OPTIMIZATION PROBLEMS

In order to get a feeling for what
is happening in the problem, let’s
experiment with some special cases.

Example 1



OPTIMIZATION PROBLEMS

Here are three
possible ways of
laying out the 2400 ft
of fencing.

Example 1



OPTIMIZATION PROBLEMS

We see that when we try shallow, wide
fields or deep, narrow fields, we get
relatively small areas.

 It seems plausible that there is some intermediate
configuration that produces the largest area.

Example 1



OPTIMIZATION PROBLEMS

This figure
illustrates
the general case.

We wish to maximize the area A of
the rectangle.

 Let x and y be the depth and width of the rectangle
(in feet).

 Then, we express A in terms of x and y: A = xy

Example 1



OPTIMIZATION PROBLEMS

We want to express A as a function of
just one variable.

 So, we eliminate y by expressing it in terms of x.

 To do this, we use the given information that
the total length of the fencing is 2400 ft.

 Thus, 2x + y = 2400

Example 1



OPTIMIZATION PROBLEMS

From that equation, we have:
y = 2400 – 2x

This gives:
A = x(2400 – 2x) = 2400x - 2x2

 Note that x ≥ 0 and x ≤ 1200 (otherwise A < 0).

Example 1



OPTIMIZATION PROBLEMS

So, the function that we wish to maximize
is:  A(x) = 2400x – 2x2 0 ≤ x ≤ 1200

 The derivative is: A’(x) = 2400 – 4x

 So, to find the critical numbers, we solve: 2400 – 4x = 0

 This gives: x = 600

Example 1



OPTIMIZATION PROBLEMS

The maximum value of A must
occur either at that critical number or
at an endpoint of the interval.

 A(0) = 0; A(600) = 720,000; and A(1200) = 0

 So, the Closed Interval Method gives the maximum
value as: 

A(600) = 720,000

Example 1



OPTIMIZATION PROBLEMS

Alternatively, we could have observed that 

A’’(x) = –4 < 0 for all x

So, A is always concave downward
and the local maximum at x = 600 must be
an absolute maximum.

Example 1



Thus, the rectangular field should
be:

 600 ft deep

 1200 ft wide

OPTIMIZATION PROBLEMS Example 1



OPTIMIZATION PROBLEMS

A cylindrical can is to be made to
hold 1 L of oil.

 Find the dimensions that will minimize
the cost of the metal to manufacture the can.

Example 2



OPTIMIZATION PROBLEMS

Draw the diagram as in
this figure, where
r is the radius and h the
height (both in
centimeters).

Example 2



OPTIMIZATION PROBLEMS

To minimize the cost of
the metal, we minimize
the total surface area of
the cylinder (top, bottom,
and
sides.)

Example 2



OPTIMIZATION PROBLEMS

We see that the sides are made from
a rectangular sheet with dimensions
2πr and h.

Example 2



OPTIMIZATION PROBLEMS

So, the surface
area is:

A = 2πr2 +
2πrh

Example 2



OPTIMIZATION PROBLEMS

To eliminate h, we use the fact that
the volume is given as 1 L, which we take
to be 1000 cm3.

 Thus, πr2h = 1000

 This gives h = 1000/(πr2)

Example 2



OPTIMIZATION PROBLEMS

Substituting this in the expression for A gives:

So, the function that we want to minimize is:

2 2
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Example 2



OPTIMIZATION PROBLEMS

To find the critical numbers, we differentiate:

 Then, A’(r) = 0 when πr3 = 500

 So, the only critical number is: 3
500 /r !=

Example 2
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OPTIMIZATION PROBLEMS

As the domain of A is (0, ∞), we can’t use the
argument of Example 1 concerning endpoints.

 However, we can observe that A’(r) < 0 for
and A’(r) > 0 for

 So, A is decreasing for all r to the left of the critical
number and increasing for all r to the right.

 Thus,                        must give rise to an absolute
minimum.

Example 2

3
500 /r !<

3
500 /r !>

3
500 /r !=



OPTIMIZATION PROBLEMS

Alternatively, we could
argue that A(r) → ∞
as r → 0+ and A(r) → ∞
as r → ∞.

 So, there must be
a minimum value of A(r),
which must occur at
the critical number.

Example 2



OPTIMIZATION PROBLEMS

The value of h corresponding to
               is:

3
2 2 3

1000 1000 500
2 2

(500 / )
h r

r! ! ! !
= = = =

Example 2

3
500 /r !=



OPTIMIZATION PROBLEMS

Thus, to minimize the cost of
the can,

 The radius should be                      cm

 The height should be equal to twice the
radius—namely, the diameter

Example 2

3
500 /r !=



OPTIMIZATION PROBLEMS

The argument used in the example
to justify the absolute minimum is a variant
of the First Derivative Test—which applies
only to local maximum or minimum values.

 It is stated next for future reference.

Note 1



Suppose that c is a critical number of a
continuous function f defined on an interval.

If f’(x) > 0 for all x < c and f’(x) < 0 for all x > c,
then f(c) is the absolute maximum value of f.

If f’(x) < 0 for all x < c and if f’(x) > 0 for all x > c,
then f(c) is the absolute minimum value of f.

FIRST DERIV. TEST FOR ABSOLUTE EXTREME VALUES



An alternative method for solving
optimization problems is to use implicit
differentiation.

 Let’s look at the example again to illustrate
the method.

OPTIMIZATION PROBLEMS Note 2



IMPLICIT DIFFERENTIATION

We work with the same equations
A = 2πr2 + 2πrh    πr2h = 100

 However, instead of eliminating h,
we differentiate both equations implicitly
with respect to r :

A’ = 4πr + 2πh + 2πrh’    2πrh + πr2h’ = 0

Note 2



The minimum occurs at a critical
number.

 So, we set A’ = 0, simplify, and arrive at
the equations

2r + h + rh’ = 0          2h + rh’ = 0

 Subtraction gives:     2r - h = 0  or  h = 2r

Note 2IMPLICIT DIFFERENTIATION



Find the point on the parabola
y2 = 2x

that is closest to the point (1, 4).

OPTIMIZATION PROBLEMS Example 3



OPTIMIZATION PROBLEMS

The distance between
the point (1, 4) and
the point (x, y) is:

 However, if (x, y) lies on
the parabola, then x = ½ y2.

 So, the expression for d
becomes:

2 2( 1) ( 4)d x y= ! + !

Example 3

2 2 21
2
( 1) ( 4)d y y= ! + !



Alternatively, we could have
substituted                 to get d in terms
of x alone.

OPTIMIZATION PROBLEMS Example 3

2y x=



OPTIMIZATION PROBLEMS

Instead of minimizing d, we minimize
its square:

 You should convince yourself that the minimum of d
occurs at the same point as the minimum of d2.

 However, d2 is easier to work with.

( ) ( )
2 22 21

2
( ) 1 4d f y y y= = ! + !

Example 3



OPTIMIZATION PROBLEMS

Differentiating, we obtain:

So, f’(y) = 0 when y = 2.

( )2 31
2

'( ) 2 1 2( 4) 8f y y y y y= ! + ! = !

Example 3



OPTIMIZATION PROBLEMS

Observe that f’(y) < 0 when y < 2 and f’(y) > 0
when y > 2.

So, by the First Derivative Test for Absolute
Extreme Values, the absolute minimum
occurs when y = 2.

 Alternatively, we could simply say that, due to
the geometric nature of the problem, it’s obvious that
there is a closest point but not a farthest point.

Example 3



OPTIMIZATION PROBLEMS

The corresponding value
of x is:

x = ½ y2 = 2
Thus, the point on y2 =
2x
closest to (1, 4) is (2, 2).

Example 3



OPTIMIZATION PROBLEMS

A man launches his boat
from point A on a bank of
a straight river, 3 km
wide,
and wants to reach point
B
(8 km downstream on
the opposite bank) as
quickly as possible.

Example 4



OPTIMIZATION PROBLEMS

He could proceed in
any
of three ways:

 Row his boat directly across
the river to point C and then
run to B

 Row directly to B

 Row to some point D
between
C and B and then run to B

Example 4



OPTIMIZATION PROBLEMS

If he can row 6 km/h and
run 8 km/h, where should
he land to reach B as
soon as possible?

 We assume that the speed
of
the water is negligible
compared with the speed at
which he rows.

Example 4



OPTIMIZATION PROBLEMS

If we let x be the distance from C to D,
then:

 The running distance is: |DB| = 8 – x

 The Pythagorean Theorem gives the rowing
distance as: |AD| =

Example 4

2
9x +



OPTIMIZATION PROBLEMS

We use the equation

 Then, the rowing time is:

 The running time is: (8 – x)/8

 So, the total time T as a function of x is:

2 9 8
( )

6 8

x x
T x

+ !
= +

Example 4
distance

time=
rate

2
9 / 6x +



OPTIMIZATION PROBLEMS

The domain of this function T is [0, 8].

 Notice that if x = 0, he rows to C, and if x = 8,
he rows directly to B.

 The derivative of T is:
2

1
'( )

86 9

x
T x

x

= !
+

Example 4



OPTIMIZATION PROBLEMS

Thus, using the fact that x ≥ 0,
we have:

 The only critical number is:

2

2

2 2

2

1
'( ) 0
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9
7 81

7

x
T x

x

x x

x x

x x

= ! =
+

! = +

! = +

! = ! =

Example 4

9 / 7



OPTIMIZATION PROBLEMS

To see whether the minimum occurs at
this critical number or at an endpoint of
the domain [0, 8], we evaluate T at all three
points: (0) 1.5

9 7
1 1.33

87

73
(8) 1.42

6

T

T

T

=

! "
= + #$ %

& '

= #

Example 4



OPTIMIZATION PROBLEMS

Since the smallest of
these values of T
occurs when x =          ,
the absolute minimum
value of T must occur
there.

 The figure illustrates
this calculation by
showing the graph
of T.

Example 4

9 / 7



OPTIMIZATION PROBLEMS

Thus, the man should
land
the boat at a point
(≈ 3.4 km) downstream
from his starting point.

Example 4

9 / 7



Find the area of the largest rectangle
that can be inscribed in a semicircle
of radius r.

OPTIMIZATION PROBLEMS Example 5



OPTIMIZATION PROBLEMS

Let’s take the semicircle
to be the upper half of
the circle x2 + y2 = r2 with
center the origin.

 Then, the word
inscribed means
that the rectangle
has two vertices
on the semicircle
and two vertices
on the x-axis.

E. g. 5—Solution 1



OPTIMIZATION PROBLEMS

Let (x, y) be the vertex
that lies in the first
quadrant.

 Then, the rectangle
has sides of
lengths 2x and y.

 So, its area is:
A = 2xy

E. g. 5—Solution 1



OPTIMIZATION PROBLEMS

To eliminate y, we use the fact that (x, y)
lies on the circle x2 + y2 = r2.

 So,

 Thus, 2 2
2A x r x= !

2 2
y r x= !

E. g. 5—Solution 1



OPTIMIZATION PROBLEMS

The domain of this function is 0 ≤ x ≤ r.

Its derivative is:

 This is 0 when 2x2 = r2, that is x =           ,
(since x ≥ 0).

2 2 2
2 2

2 2 2 2

2 2( 2 )
' 2

x r x
A r x

r x r x

!
= ! ! =

! !

E. g. 5—Solution 1

/ 2r



OPTIMIZATION PROBLEMS

This value of x gives a maximum value of A,
since A(0) = 0 and A(r) = 0 .

Thus, the area of the largest inscribed
rectangle is:

2

2 2
2

22 2

r r r
A r r
! "

= # =$ %
& '

E. g. 5—Solution 1



A simpler solution is possible
if we think of using an angle as
a variable.

OPTIMIZATION PROBLEMS Example 5



OPTIMIZATION PROBLEMS

Let θ be the angle
shown here.

 Then, the area of the
rectangle is:
A(θ) = (2r cos θ)(r sin θ)

     = r2(2 sin θ cos θ)
       = r2 sin 2θ

E. g. 5—Solution 2



OPTIMIZATION PROBLEMS

We know that sin 2θ has a maximum
value of 1 and it occurs when 2θ = π/2.

 So, A(θ) has a maximum value of r2

and it occurs when θ = π/4.

E. g. 5—Solution 2



OPTIMIZATION PROBLEMS

Notice that this trigonometric solution
doesn’t involve differentiation.

 In fact, we didn’t need to use calculus at all.

E. g. 5—Solution 2



Let us now look at
optimization problems in business
and economics.

APPLICATIONS TO BUSINESS AND ECONOMICS



MARGINAL COST FUNCTION

In Section 3.7, we introduced the idea of
marginal cost.

 Recall that if C(x), the cost function, is the cost of
producing x units of a certain product, then the marginal
cost is the rate of change of C with respect to x.

 In other words, the marginal cost function is
the derivative, C’(x), of the cost function.



DEMAND FUNCTION

Now, let’s consider marketing.

 Let p(x) be the price per unit that the company
can charge if it sells x units.

 Then, p is called the demand function
(or price function), and we would expect it
to be a decreasing function of x.



If x units are sold and the price per unit
is p(x), then the total revenue is:

R(x) = xp(x)

 This is called the revenue function.

REVENUE FUNCTION



The derivative R’ of the revenue
function is called the marginal revenue
function.

 It is the rate of change of revenue with respect
to the number of units sold.

MARGINAL REVENUE FUNCTION



If x units are sold, then the total profit
is P(x) = R(x) – C(x)
and is called the profit function.

The marginal profit function is P’,
the derivative of the profit function.

MARGINAL PROFIT FUNCTION



MINIMIZING COSTS AND MAXIMIZING REVENUES

In Exercises 53–58, you are asked to use
the marginal cost, revenue, and profit
functions to minimize costs and maximize
revenues and profits.



A store has been selling 200 DVD burners
a week at $350 each. A market survey
indicates that, for each $10 rebate offered to
buyers, the number of units sold will increase
by 20 a week.

 Find the demand function and the revenue function.
 How large a rebate should the store offer to maximize

its revenue?

Example 6MAXIMIZING REVENUE



If x is the number of DVD burners sold
per week, then the weekly increase in sales
is x – 200.

 For each increase of 20 units sold, the price
is decreased by $10.

Example 6DEMAND & REVENUE FUNCTIONS



So, for each additional unit sold, the decrease
in price will be 1/20 x 10 and the demand
function is:

p(x) = 350 – (10/20)(x – 200)
       = 450 – ½x

DEMAND FUNCTION Example 6



The revenue function is:
R(x) = xp(x)

         = 450x – ½x2

Example 6REVENUE FUNCTION



Since R’(x) = 450 – x, we see that
R’(x) = 0 when x = 450.

 This value of x gives an absolute maximum
by the First Derivative Test (or simply by observing
that the graph of R is a parabola that opens
downward).

Example 6MAXIMIZING REVENUE



The corresponding price is:
p(450) = 450 – ½(450) = 225

The rebate is: 350 – 225 = 125

 Therefore, to maximize revenue, the store
should offer a rebate of $125.

Example 6MAXIMIZING REVENUE


