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Now that we have the power of the derivative, we can use it as a way to compute limits that we
didn’t have the ability to understand before. Early on, we could compute limits of rational functions
quite easily. However, we couldn’t deal with mixing a ratio of different kinds of functions, like a
polynomial and an exponential. L’Hôpital’s Rule allows us to evaluate these kinds of limits without
much effort. It also allows us to deal with different indeterminate forms. We will see through some
examples just how weird ∞ can act and why these indeterminate forms bring about contradictions
in our intuition.

1.1 The Definition

Theorem (L’Hôpital’s Rule): Let f(x) and g(x) be differentiable on an interval I containing a, and
that g′(a) 6= 0 on I for x 6= a. Suppose that

lim
x→a

f(x)

g(x)
=

0

0
or lim

x→a

f(x)

g(x)
=
∞
∞
.

Then as long as the limits exist, we have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

There is an analogous version for when a is ∞ or −∞. What this theorem essentially says is
that if you tried to compute the limit of a ratio of functions, but you get the indeterminate forms
0
0

or ∞∞ , then you can compute the limit of the ratio of the derivatives of those functions instead.
However, take caution that it is not necessarily a short cut. When encountering limits that we have
seen before, it may be faster to use a different technique than L’Hôpital’s Rule. Also note that
we are not taking a quotient rule. We just take the derivatives of the top and the bottom of the
fraction and leave them there.

1.2 How it Works

Before we could compute the derivative of sin(x) or cos(x), we had to figure out two trig limits. We

found that lim
x→0

sin(x)

x
= 1 by using some geometry tricks with sectors and whatnot. Now that we

know how to compute derivatives, we can use L’Hôpital’s Rule to check that this is correct.
In order to use L’Hôpital’s Rule, we need to check that it is in the right form and that we get

one of the indeterminate forms required. As usual with limits, we attempt to just plug in the value
and see if we get a number. If we did get a real number, then we are done. Here we can see that if

we try to plug in x = 0 in the limit, we get that lim
x→0

sin(x)

x
=

0

0
, which is an indeterminate form.

Therefore, we can apply L’Hôpital’s Rule. Whenever we do so, we will use a “
L’H
=” to denote that we

have used the rule and “=” to denote our usual simplification. So, applying L’Hôpital’s Rule, we

get lim
x→0

sin(x)

x
L’H
= lim

x→0

cos(x)

1
. However, this second expression is a limit of a continuous function,

so we can just plug x = 0 and get that lim
x→0

sin(x)

x
L’H
= lim

x→0

cos(x)

1
= cos(0) = 1, verifying what we

already know to be true.
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We can do the same with our other trig limit, lim
x→0

cos(x)− 1

x
= 0. First, we have to check

that L’Hôpital’s Rule even applies. If we tried to plug in x = 0 we would get
cos(0)− 1

0
=

0

0
,

which is one of our indeterminate forms. L’Hôpital’s Rule does apply to this form, so we get that

lim
x→0

cos(x)− 1

x
L’H
= lim

x→0

− sin(x)

1
= − sin(0) = 0.

1.3 Examples with Indeterminate Forms

1.3.1
0

0
Form

Question: Why is 0
0

indeterminate? In general, 0
stuff

= 0, and stuff
0

acts like ∞. So the top pulls
the limit down towards zero, and the bottom pulls it up to infinity. So who wins?

• Let’s say we want to compute lim
x→2

x− 2

x2 − 4
. We can see that if we try to plug in x = 2, we get

0
0
. Therefore we can apply L’Hôpital’s Rule to get

lim
x→2

x− 2

x2 − 4
L’H
= lim

x→2

1

2x
=

1

2(2)
=

1

4
.

But this is a limit that we could’ve computed in the first week of the course; we don’t even
need the relative canon that is L’Hôpital to swat this little limit. Earlier we would’ve just
factored the bottom and gotten

lim
x→2

x− 2

x2 − 4
= lim

x→2

x− 2

(x− 2)(x+ 2)
= lim

x→2

1

x+ 2
=

1

4
.

Either way is just as quick because this is a simple limit.

• For a more interesting example, let’s try to compute lim
x→0

ln(sec(x))

3x2
. We see a limit, so our first

instinct is to plug in the limiting value x = 0. When we do this, we get
ln(sec(0))

3(0)2
=

ln(1)

0
=

0

0
.

This is one of the indeterminate forms that L’Hôpital’s Rule can help us with. So, we use it
to get

lim
x→0

ln(sec(x))

3x2

L’H
= lim

x→0

1
sec(x)

· sec(x) tan(x)

6x
= lim

x→0

tan(x)

6x
.

Trying to take this limit also results in 0
0
. So did L’Hôpital fail us? Not quite. All L’Hôpital

tells us is that the limit of the original ratio is that same as the limit of the ratio of the
derivatives. We got 0

0
, which is what L’Hôpital’s Rule is designed for, so let’s use it again!

Thus, we get

lim
x→0

ln(sec(x))

3x2

L’H
= lim

x→0

tan(x)

6x
L’H
= lim

x→0

sec2(x)

6
=

1

6
.

Therefore, our original limit has a value of 1/6. This problem shows us that you may need to
use L’Hôpital’s Rule multiple times before we get an answer. However, we do need to check
that we are in the correct indeterminate form each time before we can apply it.
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1.3.2
∞
∞

Form

Question: Why is ∞∞ indeterminate? Usually ∞
stuff

acts like ∞ and stuff
∞ goes to 0. So the top pulls

the limit up to infinity and the bottom tries to pull it down to 0. So who wins?

• Consider the following limit, lim
x→∞

2x2

e3x
. Since this ratio is of a polynomial and an exponential

function, we can’t solve it with any of the usual techniques from earlier in the course. We can
see that if we could plug in larger and larger values that 2x2 diverges up to infinity, and so
does e3x. Thus, this limit looks like ∞∞ , which L’Hôpital’s Rule can handle. We get that

lim
x→∞

2x2

e3x

L’H
= lim

x→∞

4x

3e3x
.

But we can see that this second limit is also ∞∞ , so we can apply L’Hôpital’s Rule again to get

lim
x→∞

2x2

e3x

L’H
= lim

x→∞

4x

3e3x

L’H
= lim

x→∞

4

9e3x
= 0.

Remember that we can apply L’Hôpital’s Rule as many times as is needed. However, this can
backfire.

• Consider lim
x→−∞

x67 − 3x40 + x+ 1

x12 + 2x64 − x2 − 5
. If we try the limit, we see that we get −∞∞ . We could

blindly try to use L’Hôpital’s Rule, but when we do that we only reduce the degrees of the
numerator and denominator by one. We would still be left with large powers on the top and
the bottom, and it would still be some sort of ±∞±∞ . In fact, we would have to do L’Hôpital’s
Rule 64 times before we get an answer that is not in an indeterminate form!

This problem can be much more easily done with our old technique. We can see that we get

lim
x→−∞

x67 − 3x40 + x+ 1

x12 + 2x64 − x2 − 5
· 1/x64

1/x64
= lim

x→−∞

x3 − 3
x24

+ 1
x63

+ 1
x64

1
x52

+ 2− 1
x62
− 5

x64

= −∞.

• Now let’s compute lim
x→0+

ln(ex − 1)

ln(x)
. When we try to plug in x = 0 (or rather, smaller and

smaller positive numbers), we know that ln(x) approaches −∞. Thus, this limit looks like
−∞
−∞ . Thus, by L’Hôpital’s Rule we get

lim
x→0+

ln(ex − 1)

ln(x)
L’H
= lim

x→0+

1
ex−1
· ex

1
x

= lim
x→0+

xex

ex − 1
.

Now when we try to plug in x = 0, we get the indeterminate form 0
0
. So we can use L’Hôpital’s

Rule again. Now we get

lim
x→0+

ln(ex − 1)

ln(x)
L’H
= lim

x→0+

xex

ex − 1
L’H
= lim

x→0+

xex + ex

ex
= lim

x→0+
x+ 1 = 1.

From this example we can see that sometimes the indeterminate forms can change as we use
L’Hôpital’s Rule and simplify. As long as we are careful and check at each step whether we
can use L’Hôpital’s Rule or not, we can still get to the answer.
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1.3.3 0 · ∞ Form

Question: Why is 0 · ∞ indeterminate? Usually 0 · (stuff) = 0 and (stuff) · ∞ =∞. So one piece
tries to pull the limit down to zero, and the other tries to pull it up to ∞. Does one side win? Or
do they sort of balance each other out and we get an answer of something like 7?

• As a first example, let’s compute lim
x→∞

x sin

(
1

x

)
. We can see that as x goes off to infinity,

1/x goes to zero and sin(0) = 0. So we have the form ∞ · 0. However, this isn’t a form that
L’Hôpital’s Rule can be used on. In order to determine what value the limit approaches we
have to first put it in the correct form. The trick that we will use is a way to rewrite x. Recall

that x =
1
1
x

. Using this, we can rewrite the given limit as follows,

lim
x→∞

x sin

(
1

x

)
= lim

x→∞

1
1
x

sin

(
1

x

)
= lim

x→∞

sin
(

1
x

)
1
x

.

Now if we look at this limit and consider x tending to∞, we see the top approaches 0 and the
bottom also approaches 0. Thus, we are now in the correct form for L’Hôpital’s Rule. Thus,
we get

lim
x→∞

x sin

(
1

x

)
= lim

x→∞

sin
(

1
x

)
1
x

L’H
= lim

x→∞

cos
(

1
x

)
· (−1

x2
)

−1
x2

= lim
x→∞

cos

(
1

x

)
= cos(0) = 1.

We can see that sometimes we’ll need to do some manipulation of the terms in the limit before
we can use L’Hôpital’s Rule.

• Now let’s compute lim
x→0+

x3 ln(x). As x approaches zero, we can see that we get the form

0 · −∞. Following the same trick as last time, we can compute that the value of this limit is

lim
x→0+

x3 ln(x) = lim
x→0+

ln(x)

x−3

L’H
= lim

x→0+

1
x

−3x−4
= lim

x→0+

x3

−3
= 0.

• For a slightly trickier example, consider lim
t→π

2
−

tan(t) sin
(
t− π

2

)
. We can see that this is of the

∞ · 0 type, but we can’t use the same trick as last time. When in doubt with trigonometric
functions, turn everything back into sines and cosines. Here, we get

lim
t→π

2
−

tan(t) sin
(
t− π

2

)
= lim

t→π
2
−

sin(t)

cos(t)
sin

(
t− π

2

)
,

which is in the 0
0

form now. Thus, we can now use L’Hôpital’s Rule. Therefore, we calculate

lim
t→π

2
−

tan(t) sin
(
t− π

2

)
= lim

t→π
2
−

sin(t) sin
(
t− π

2

)
cos(t)

L’H
= lim

t→π
2
−

cos(t) sin
(
t− π

2

)
+ sin(t) cos

(
t− π

2

)
− sin(t)

=
cos

(
π
2

)
sin(0) + sin

(
π
2

)
cos(0)

− sin
(
π
2

) = −1.
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1.3.4 ∞−∞ Form

Question: Why is ∞−∞ indeterminate? In general ∞− (stuff) = ∞, but (stuff) −∞ = −∞.
So who wins? Or do they balance out and we get something like −π?

• To start with, let’s look at lim
x→∞

ln(4x2−6)−ln(−x+3x2+5). We know that the end behavior of

ln(x) approaches infinity as x gets larger and larger. Since the insides of both logs approaches
infinity, the limit looks like ∞−∞. To move forward with computing the limit, we can use
our logarithm rules to simplify and get

lim
x→∞

ln(4x2 − 6)− ln(−x+ 3x2 + 5) = lim
x→∞

ln

(
4x2 − 6

−x+ 3x2 + 5

)
.

Now recall that ln(x) is a continuous function on its domain. That means we can pass the
limit to the inside of the function, and only have to worry about what happens with the
rational function on the inside. In other words,

lim
x→∞

ln

(
4x2 − 6

−x+ 3x2 + 5

)
= ln

(
lim
x→∞

4x2 − 6

−x+ 3x2 + 5

)
.

Notice that the inside limit is something we spent a lot of time understanding how to compute
at the beginning of the class! So we can use our usual limit techniques to compute this. In

fact, this is also in the
∞
∞

form, so we could even use L’Hôpital’s Rule from the earlier section!

Thus, we finally conclude that the answer we are looking for is

lim
x→∞

ln

(
4x2 − 6

−x+ 3x2 + 5

)
= ln

(
lim
x→∞

4x2 − 6

−x+ 3x2 + 5

)
= ln

(
lim
x→∞

4− 6
x2

−1
x

+ 3 + 5
x2

)
= ln

(
4

3

)
.

• For a second example, we’ll compute lim
x→1+

1

x− 1
− 1

lnx
. To see that this really is in ∞−∞

form, notice that as x approaches 1 from the right, ln(x) will approach zero from the right.
Thus, the denominator of both pieces of the limit approaches zero from the right, and we

know from our parent functions that lim
x→0+

1

x
= ∞. Therefore we really are in the ∞ −∞

form. This time only one side has a logarithm, so we can’t use our log rules right off the bat.
However, this really just looks like a fraction subtracted from another fraction, and we know
how to simplify that with a common denominator. So we get

lim
x→1+

1

x− 1
− 1

lnx
= lim

x→1+

ln(x)− (x− 1)

(x− 1) ln(x)
.

When we look at this limit, we see that we are now in
0

0
form, which is perfect for L’Hôpital’s!

Notice that on the bottom there are two functions of x that are being multiplied, so when we
do the derivative we will need the product rule. Thus,

lim
x→1+

1

x− 1
− 1

lnx
= lim

x→1+

ln(x)− (x− 1)

(x− 1) ln(x)

L’H
= lim

x→1+

1
x
− 1

ln(x) + (x− 1) 1
x

L’H
= lim

x→1+

−1
x2

1
x

+ 1
x2

=
−1

1 + 1
=
−1

2
.
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1.3.5 ∞0 Form

Question: Why is ∞0 indeterminate? In general ∞ raised to any positive power should be equal
to ∞, ∞ raised to a negative power is 0, and anything raised to the zero should be equal to 1. So
who wins?

• An example of this form is the limit lim
x→∞

(ln(x))1/x. Notice that as x gets large, ln(x) also

gets large, and that 1
x

gets small. So the power converges to 0 but the function on the inside
diverges to ∞. The issue with this form is that we can’t do much with manipulating the
exponent. So we would really like to get the 1

x
out of the exponent so that we can deal with

it more effectively. We will exploit our log rules here to bring that power down. However, we
have to be careful! We can’t just use the log rule ln(ab) = b ln(a) right now because it’s not in
that form! First, we need to transform it into that form. As with all our other techniques, we
need ot change the equation without changing the outcome. Before we have been multiplying
by weird forms of 1, or we have added weird forms of zero. This time, we will use the fact
that ex and ln(x) are inverses of each other. Recall that eln(x) = x. That is, if we apply both
ln(x) and ex to a function, we end up with exactly the same thing. For us, that means we
will do the following

lim
x→∞

(ln(x))1/x = lim
x→∞

eln((ln(x))1/x).

Now we can use our log rule to bring the power down, but notice that everything will be
happening in the exponent of e. Since ex is a continuous function, we can also push the limit
up into the exponent. Thus, we have

lim
x→∞

eln((ln(x))1/x) = elimx→∞
1
x
·ln(ln(x)) = elimx→∞

ln(ln(x))
x .

Now we only need to worry about the limit that is in the exponent. In this case, as x goes
to ∞, both the top and bottom go to ∞, so we are in the proper form for L’Hôpital’s Rule.
Thus, we have

lim
x→∞

eln((ln(x))1/x) = elimx→∞
ln(ln(x))

x

L’H
= elimx→∞

1
ln(x)

· 1
x

= e0 = 1.

• Now let’s compute lim
→x→∞

x1/ ln(x). Recall that as x tends to infinity, so does ln(x). So 1
ln(x)

approaches zero as x goes to infinity. Thus, we are in the form ∞0. Again we need to be able
to get into that exponent, so we use the same trick with ex and ln(x). Then we get

lim
x→∞

x1/ ln(x) = lim
x→∞

eln(x1/ ln(x))

= elimx→∞ ln(x1/ ln(x))

= elimx→∞
1

ln(x)
ln(x)

= elimx→∞ 1 = e.

It turns out we don’t even technically need L’Hôpital’s Rule here because the logarithms
cancel before we even need to take derivatives. However, we can use it twice to get the same
value as the cancellation.
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1.3.6 1∞ Form

Question: Why is 1∞ indeterminate? Usually 1 raised to any power is just equal to 1. But
fractions raised to the ∞ goes to zero, and numbers larger than 1 raised to the ∞ should go off to
∞. So where does 1∞ go?

• Consider the limit lim
x→0+

(ex + x)1/x. Since e0 = 1, we can see that this limit is of the form

we want, 1∞. We can see here that we are in the same situation as last time: we have an
exponent that has an x in it and we need to move it around to be able to deal with it. We can
try the same technique as last time and exploit the inverse property of ex and ln(x), namely
that eln(x) = x. Thus, we get

lim
x→0+

(ex + x)1/x = lim
x→0+

eln((ex+x)1/x) = lim
x→0+

e
ln(ex+x)

x .

Here notice that as x approaches zero, the top of the fraction in the exponent approaches
ln(1) = 0, and the denominator approaches zero as well. Thus, we are in the earlier case of 0

0
.

Therefore, we can move forward and use L’Hôpital’s Rule to get

lim
x→0+

(ex + x)1/x = lim
x→0+

e
ln(ex+x)

x

L’H
= lim

x→0+
e

1
ex+x

·(ex+1)

= elimx→0+
ex+1
ex+x = e2.

• For a second example, let’s compute lim
x→∞

(
x+ 2

x− 1

)x

. Here we can easily see that the exponent

goes to infinity as x grows large, and notice that
x+ 2

x− 1
converges to 1 by L’Hôpital’s Rule.

Thus we are in the form 1∞. As before, we use our logarithm trick to get

lim
x→∞

(
x+ 2

x− 1

)x

= lim
x→∞

ex ln( x+2
x−1).

Notice that we now have the form ∞ · 0 in the exponent, se we can use our earlier tricks to
solve this exponent. Thus,

lim
x→∞

(
x+ 2

x− 1

)x

= lim
x→∞

ex ln( x+2
x−1)

= lim
x→∞

e
ln( x+2

x−1)
1/x

L’H
= lim

x→∞
e

x−1
x+2 ·

(x−1)−(x+2)

(x−1)2

−1/x2

= lim
x→∞

e
3x2

(x+2)(x−1) = e3.
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1.3.7 00 Form

Question: Why is 00 indeterminate? In general zero raised to any positive power is just zero, but
but anything raised to the zero should be equal to 1. So which is it?

• Consider lim
x→0+

x
−1

ln(x) . To check that this is in the right form, we need ot look at the exponent.

as x approaches 0, ln(x) approaches negative infinity. Then 1 divided by something that
approaches approaches infinity goes to zero. So we are in 00 form. We again have functions
in the exponent, so we’ll use the logarithm trick. Thus,

lim
x→0+

x
−1

ln(x) = lim
x→0+

eln(x−1/ ln(x))

= lim
x→0+

e
ln(x)
− ln(x)

L’H
= lim

x→0+
e

1/x
−1/x

L’H
= e1/−1 = e−1.

We could have just simplified ln(x)
− ln(x)

to be −1 right off the bat, but we used L’Hôpital’s Rule
to show that it still works.

• For another example, we’ll compute lim
x→0+

xx
10

. Since we don’t have a ratio, we use are usual

transformation to get one to show up. To start,

lim
x→0+

xx
10

= lim
x→0+

eln(xx
10

) = lim
x→0+

ex
10 ln(x).

We now have a 0 · ∞ form, which we dealt with above. To continue, we get

lim
x→0+

xx
10

= lim
x→0+

ex
10 ln(x)

= lim
x→0+

e
ln(x)

x−10

L’H
= lim

x→0+
e

1/x

−10x−11

= lim
x→0+

e
−x10
10 = 1.

• As our last example, consider lim
x→0+

xsin(x). Since sin(0) = 0, we are in the form 00. As before,

we get

lim
x→0+

xsin(x) = lim
x→0+

esin(x) ln(x) = lim
x→0+

e
ln(x)
csc(x)

L’H
= lim

x→0+
e

1/x
− csc(x) cot(x) .

This is in the form ∞
∞ , but before we blindly keep using L’Hôpital’s rule, we should simplify

the expression. Thus, we get

lim
x→0+

e
1/x

− csc(x) cot(x) = lim
x→0+

e
− sin(x) sin(x)

x cos(x) ,

which is in 0
0

form. However, we should recognize the limit limx→0
sin(x)
x

= 1. When we
incorporate this into the calculation, we don’t even need L’Hôpital’s Rule any more (but we
could if desired). Thus, we get our final answer of

lim
x→0+

e
− sin(x) sin(x)

x cos(x) = e−1· 0
1 = 1.
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