= lim
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48in2x

x—>0 —4x2 sin 2x + 4x cos 2x + 8x cos 2x + 4sin2x + 4sin x cos x

. 48in2x
= lim

x—0 (6 —4x2)sin2x + 12x cos 2x

8 cos2x

Numerically we find:

i
xEPO (12 — 8x2) cos 2x — 8x sin2x + 12 cos 2x — 24x sin 2x

0.1

0.01

1 1

sin?x  x2

0.412283 | 0.334001

0.333340

=3

1

433

80. In the following cases, check that x = c¢ is a critical point and use Exercise 75 to determine whether f(c) is a local minimum

or a local maximum.
@ fx)=x>—6x*+14x3—16x2+9x+12 (c=1)
®) f(x)=x-x3 (c=0)

SOLUTION

(a) Let f(x) = x> —6x* 4 14x3 —16x2 + 9x + 12. Then f”(x) = 5x* —24x3 +42x2 —32x + 9,50 f/(1) =5—24 + 42 —

324+ 9 =0and ¢ = 1is a critical point. Now,

F7(x) = 20x3 — 72x% 4 84x — 3250 £ (1) = O;
£ (x) = 60x2 — 144x + 84 s0 f"(1) = 0;

F®(x) = 120x — 144 50 F® (1) = =24 £ 0.

Thus, n = 4 is even and f(4) < 0,s0 f(1)is alocal maximum.

(b) Let f(x) = x%—x3. Then, f’(x) = 6x> —3x2,s0 f/(0) = 0 and ¢ = 0 is a critical point. Now,

F"(x) = 30x* — 6x s0 f(0) = 0;

S (x) =120x —6s0 f"(0) = —6 # 0.

Thus, n = 3 is odd, so f(0) is neither a local minimum nor a

local maximum.

4.6 Graph Sketching and Asymptotes

Preliminary Questions

1. Sketch an arc where f” and f” have the sign combination ++. Do the same for —+.

SOLUTION An arc with the sign combination ++ (increasing, concave up) is shown below at the left. An arc with the sign
combination —+ (decreasing, concave up) is shown below at the right.

y
X X

2. If the sign combination of f/ and /"' changes from ++ to +— at x = ¢, then (choose the correct answer):

(a) f(c)isalocal min
(¢) c is apoint of inflection

SOLUTION Because the sign of the second derivative changes at x = c, the correct response is (¢): ¢ is a point of inflection.

(b) f(c) is alocal max

3. The second derivative of the function f(x) = (x —4) 1 is f”(x) = 2(x — 4)73. Although f”(x) changes sign at x = 4,

f(x) does not have a point of inflection at x = 4. Why not?

SOLUTION The function f'does not have a point of inflection at x = 4 because x = 4 is not in the domain of /.
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Exercises
1. Determine the sign combinations of f’ and f” for each interval A-G in Figure 1.

FIGURE 1

SOLUTION

e In A, f is decreasing and concave up, so f’ < 0and f” > 0.
e InB, f is increasing and concave up, so f’ > 0 and /" > 0.
e InC, f is increasing and concave down, so f/ > 0 and f” < 0.
e InD, f is decreasing and concave down, so f’ < 0and f” < 0.
e InE, f is decreasing and concave up, so f’ < Oand f” > 0.
e InF, f is increasing and concave up, so f/ > 0 and f” > 0.
e InG, f is increasing and concave down, so f’ > 0 and f” < 0.

2. State the sign change at each transition point A-G in Figure 2. Example: f”(x) goes from + to — at A.

FIGURE 2

SOLUTION

e At A, the graph changes from increasing to decreasing, so f’ goes from + to —.
At B, the graph changes from concave down to concave up, so /' goes from — to +.
e At C, the graph changes from decreasing to increasing, so f’ goes from — to +.
e At D, the graph changes from concave up to concave down, so f” goes from + to —.
e AtE, the graph changes from increasing to decreasing, so f/ goes from + to —.
o AtF, the graph changes from concave down to concave up, so f” goes from — to +.
e At G, the graph changes from decreasing to increasing, so f” goes from — to +.

In Exercises 3-6, draw the graph of a function for which [’ and " take on the given sign combinations.

3. ++, +—, —
SOLUTION This function changes from concave up to concave down at x = —1 and from increasing to decreasing at x = 0.
-1 1
+ + X
1
¥y
4. +_7 ] —+

SOLUTION This function changes from increasing to decreasing at x = 0 and from concave down to concave up at x = 1.




SECTION 4.6 | Graph Sketching and Asymptotes 435

5' _+7 ] —+
SOLUTION The function is decreasing everywhere and changes from concave up to concave down at x = —1 and from concave
down to concave up at x = —%.

X

6. —+, ++, +-—

SOLUTION This function changes from decreasing to increasing at x = 0 and from concave up to concave down at x = 1.
y
0.6

0.4
0.2

7. Sketch the graph of y = x% — 5x + 4.

SOLUTION Let f(x) = x2 —5x 4+ 4. Then f/(x) = 2x —5and f”(x) = 2. Hence f is decreasing for x < 5/2, is increasing
for x > 5/2, has a local minimum at x = 5/2 and is concave up everywhere.

y
15
0
3
~—" ¢
8. Sketch the graph of y = 12 — 5x — 2x2.

SOLUTION Let f(x) = 12 — 5x — 2x2. Then f/(x) = —5 — 4x and f”(x) = —4. Hence f is increasing for x < —5/4, is
decreasing for x > —5/4, has a local maximum at x = —5/4 and is concave down everywhere.

9. Sketch the graph of f(x) = x3 — 3x2 + 2. Include the zeros of f(x), which are x = 1 and 1 &+ +/3 (approximately
—0.73,2.73).
SOLUTION Let f(x) = x3 —3x2 + 2. Then f’(x) = 3x% — 6x = 3x(x —2) = O yields x = 0,2 and f”(x) = 6x — 6. Thus
f is concave down for x < 1, is concave up for x > 1, has an inflection point at x = 1, is increasing for x < 0 and for x > 2, is
decreasing for 0 < x < 2, has a local maximum at x = 0, and has a local minimum at x = 2.

10. Show that f(x) = x3 — 3x2 + 6x has a point of inflection but no local extreme values. Sketch the graph.

SOLUTION Let f(x) = x3 —3x% + 6x. Then f/(x) = 3x2 —6x + 6 = 3 ((x - 1)2 + 1) > ( for all values of x and
f"(x) = 6x — 6. Hence f is everywhere increasing and has an inflection point at x = 1. It is concave down on (—oo, 1) and
concave up on (1, 00).
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11. Extend the sketch of the graph of f(x) = cosx + %x in Example 4 to the interval [0, 57].

— 1 4 _ ; 1 _ ; 4 ; _nmn 5m 137 17n 257
SZ(Q)LUTION Let f(x) = cosx + 5x. Then f'(x) = —sinx + 5 = Oy1e1d3s cr1210a17pomts atgx =%-% 6> &% and
T " . . H b 41 T T T
=g - Moreover, f"(x) = —cos x so there are points of inflection at x = 7, ¢, >*, ¥, and .

y

0 246 S0
12. Sketch the graphs of y = x2/3 and y = x4/3,
SOLUTION

o Let f(x) = x2/3. Then f/(x) = %x‘1/3 and f"(x) = —%x‘4/3, neither of which exist at x = 0. Thus f is decreasing
and concave down for x < 0 and increasing and concave down for x > 0.

y

o Let f(x) = x*/3. Then f/(x) = %x1/3 and f"(x) = gx_2/3. Thus f is decreasing and concave up for x < 0 and
increasing and concave up for x > 0.

In Exercises 13-34, find the transition points, intervals of increase/decrease, concavity, and asymptotic behavior. Then sketch the
graph, with this information indicated.

13. y = x3 4+ 24x2
SOLUTION Let f(x) = x3 + 24x2. Then f’(x) = 3x2 4 48x = 3x (x + 16) and f”(x) = 6x + 48. This shows that f has

critical points at x = 0 and x = —16 and a candidate for an inflection point at x = —8.
Interval (—o0,—16) | (—16,—8) | (—8,0) | (0,00)
Signs of f” and f” +— — — 4+
Thus, there is a local maximum at x = —16, a local minimum at x = 0, and an inflection point at x = —8. Moreover,
xlirlloo f(x) =—o00 and xl_i)moo f(x) = o0.

Here is a graph of f with these transition points highlighted as in the graphs in the textbook.

y
3000

2000

[—20-15-10 -5 s
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14. y =x3-3x+5

SOLUTION Let f(x) = x3 —3x + 5. Then f/(x) = 3x2 — 3 and f”(x) = 6x. Critical points are at x = =1 and the sole
candidate point of inflection is at x = 0.

Interval (—oo,—1) | (—=1,0) | (0,1) | (1,00)
Signs of f” and f” +— — — 44

Thus, f(—1) is a local maximum, f(1) is a local minimum, and there is a point of inflection at x = 0. Moreover,
xlyzloo f(x) =—oc0 andxll)moo f(x) = oo.

Here is the graph of f with the transition points highlighted as in the textbook.

¥

15. y = x2 —4x3
SOLUTION Let f(x) = x2 — 4x>. Then f'(x) = 2x — 12x% = 2x(1 — 6x) and f"(x) = 2 — 24x. Critical points are at x = 0

and x = %, and the sole candidate point of inflection is at x = 11—2

1 1

Interval (=00,0) | (0,73) | (13-%) (%’OO)

Signs of f” and 1" —+ ++ 4 _—

=

Thus, f(0) is a local minimum, f (%) is a local maximum, and there is a point of inflection at x = 1—12 Moreover,

lim f(x) = oo.

x—>to00

Here is the graph of f with transition points highlighted as in the textbook:

-0.04

16. y:%x3+x2+3x

SOLUTION Let f(x) = %x3 + x2 4+ 3x. Then f'(x) = x2 +2x +3,and f”(x) = 2x + 2 = 0 if x = —1. Sign analysis
shows that f/(x) = (x + 1)2 +2 > 0 for all x (so that f(x) has no critical points and is always increasing), and that f”(x)
changes from negative to positive at x = —1, implying that the graph of f(x) has an inflection point at (—1, f(—1)). Moreover,

xlylloo f(x) =—00 and xli)moo f(x) = o0.

A graph with the inflection point indicated appears below:

17. y =4—-2x% + éx“
SOLUTION Let f(x) = %x“ —2x2 4+ 4. Then f/(x) = %x3 —4x = %x (x2—6) and f”(x) = 2x2 — 4. This shows that f
has critical points at x = 0 and x = £+/6 and has candidates for points of inflection at x = £+/2.
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Interval (=00, —v6) | (=v6,—v2) | (=+/2.0) | (0,v2) | (¥V2,4/6) | (v/6,0)
Signs of f’ and f” —+ ++ +- —_ —+ ++

Thus, f has local minima at x = i«/@, a local maximum at x = 0, and inflection points at x = +2. Moreover,

li = o0.
x—:lz}:loo J(x) =00

Here is a graph of f with transition points highlighted.

-2 2

18. y = 7x* —6x2 +1
SOLUTION Let f(x) = 7x* — 6x2 + 1. Then f’(x) = 28x3 — 12x = 4x (7x% — 3) and f"(x) = 84x? — 12. This shows that

f has critical points at x = 0 and x = :I:@ and candidates for points of inflection at x = £ 4 .

Intervel (oo, =20y | (2L Ty | (L0 | 0.9 | (L2 | (B o0)
Signs of " and f” —+ ++ +— —— — 4+

Thus, f has local minima at x = :i:—“721, a local maximum at x = 0, and inflection points at x = :i:ﬁ. Moreover,

lim  f(x) = oo.

x—>to00

Here is a graph of f with transition points highlighted.

SAVAR VAR

=05

19. y = x> 4 5x

SOLUTION Let f(x) = x> 4 5x. Then f’(x) = 5x* + 5 = 5(x* 4+ 1) and f”(x) = 20x3. f’(x) > 0 for all x, so the graph
has no critical points and is always increasing. f”/(x) = 0 at x = 0. Sign analyses reveal that f”(x) changes from negative to
positive at x = 0, so that the graph of f(x) has an inflection point at (0, 0). Moreover,

xlylloo f(x) =—oc0 and xli>moo f(x) = o0.

Here is a graph of f with transition points highlighted.

-2 1 2

20. y = x° — 15x3
SOLUTION Let f(x) = x° — 15x3. Then f’(x) = 5x* — 45x2 = 5x2(x2 — 9) and f”(x) = 20x3 — 90x = 10x(2x2 — 9).
This shows that f has critical points at x = 0 and x = %3 and candidate inflection points at x = 0 and x = £3+/2/2. Sign

analyses reveal that f/(x) changes from positive to negative at x = —3, is negative on either side of x = 0 and changes from
negative to positive at x = 3. The graph therefore has a local maximum at x = —3 and a local minimum at x = 3. Further sign
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analyses show that f”(x) transitions from positive to negative at x = 0 and from negative to positive at x = £3+/2/2. The graph
therefore has points of inflection at x = 0 and x = +3+/2/2. Moreover,

xlylloo f(x) =—o0c0 and xll>moo f(x) = o0.

Here is a graph of f with transition points highlighted.

~<

21, y = x* —3x3 + 4x
SOLUTION Let f(x) = x* —3x3 + 4x. Then f/(x) = 4x3 —9x2 +4 = (4x2 —x —2)(x —2) and f”(x) = 12x% — 18x =

1+ V33
6x(2x — 3). This shows that f has critical points at x = 2 and x = — and candidate points of inflection at x = 0 and
X = % Sign analyses reveal that f’(x) changes from negative to positive at x = 1—§/§’ from positive to negative at x = 1+§/§,

and again from negative to positive at x = 2. Therefore, f( I_T "33) and f(2) are local minima of f(x), and f( H'T "33) is a local
maximum. Further sign analyses reveal that f”/(x) changes from positive to negative at x = 0 and from negative to positive at
X = %, so that there are points of inflection both at x = 0 and x = % Moreover,

lim f(x) = oo.

x—>to00

Here is a graph of f(x) with transition points highlighted.

t > X
-1 12
\4
22. y = x2(x — 4)?

SOLUTION Let f(x) = x2(x — 4)2. Then
1) =2x(x —4)?2 +2x2(x —4) = 2x(x —4)(x — 4+ x) = dx(x —4)(x —2)
and
F7(x) = 12x% — 48x + 32 = 4(3x2 — 12x + 8).

Critical points are therefore at x = 0, x = 4, and x = 2. Candidate inflection points are at solutions of 4(3x2 —12x +8) =0,

which, from the quadratic formula, are at 2 £ @ =24 %E
Sign analyses reveal that f”(x) changes from negative to positive at x = 0 and x = 4, and from positive to negative at x = 2.

Therefore, f(0) and f(4) are local minima, and f'(2) a local maximum, of f(x). Also, /" (x) changes from positive to negative at

2— zTﬁ and from negative to positive at 2 + 2—“3/5 Therefore there are points of inflection at both x = 2 £+ zTﬁ Moreover,

li = 00.
x—:I:}:loo J) o0

Here is a graph of f(x) with transition points highlighted.
¥

251

204

154
04
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23, y = x7 —14x°

SOLUTION Let f(x) = x7 — 14x% Then f’(x) = 7x® —84x° = 7x° (x — 12) and f”(x) = 42x° — 420x* = 42x* (x — 10).
Critical points are at x = 0 and x = 12, and candidate inflection points are at x = 0 and x = 10. Sign analyses reveal that f”(x)
changes from positive to negative at x = 0 and from negative to positive at x = 12. Therefore f(0) is a local maximum and f(12)
is a local minimum. Also, f”(x) changes from negative to positive at x = 10. Therefore, there is a point of inflection at x = 10.
Moreover,

xlylloo f(x) =—oc0 and xli>moo f(x) = o0.

Here is a graph of f with transition points highlighted.

y

1 x 107

5% 10°

7 }r ~u ]
-5 x 106

24, y = x%—9x*

SOLUTION Let f(x) = x®—9x*. Then f’(x) = 6x° —36x3 = 6x3(x2 —6) and f”(x) = 30x* — 108x2 = 6x2(5x2 — 18).

This shows that f has critical points at x = 0 and x = £+/6 and candidate inflection points at x = 0 and x = £3+/10/5. Sign

analyses reveal that f’(x) changes from negative to positive at x = —+/6, from positive to negative at x = 0 and from negative

to positive at x = +/6. The graph therefore has a local maximum at x = 0 and local minima at x = £+/6. Further sign analyses

show that f”/(x) transitions from positive to negative at x = —34/10/5 and from negative to positive at x = 34/10/5. The graph
therefore has points of inflection at x = £3+/10/5. Moreover,

li = o0.
x—:I:}:loo J(x) =00

Here is a graph of f with transition points highlighted.

400
200
-2 2 /.
e }r =/
—200

25. y =x—4x

SOLUTION Let f(x) = x —4/x = x — 4x'/2 Then fl(x)=1- 2x~ /2. This shows that f has critical points at x = 0
(where the derivative does not exist) and at x = 4 (where the derivative is zero). Because f/(x) < 0for0 < x < 4and f/(x) >0
for x > 4, f (4) is a local minimum. Now f”(x) = x3/2 > 0 forall x > 0, so the graph is always concave up. Moreover,

xl_i)rnoo f(x) = oo.

Here is a graph of f with transition points highlighted.

y
4
2
+ + 4 + X
s 10 A5 20
QV
26 y = J/x+V16—x

SOLUTION Let f(x) = /x + V16 —x = x1/2 4 (16 — x)l/z. Note that the domain of f is [0, 16]. Now, f/(x) = %x_l/z —
% (16 — )c)_l/2 and f”(x) = —%x_3/2 — % (16 — x)_3/2. Thus, the critical points are x = 0, x = 8 and x = 16. Sign analysis
reveals that f/(x) > 0 for0 < x < 8and f/(x) <0 for8 < x < 16, so f has a local maximum at x = 9. Further, /”/(x) < 0 on
(0, 16), so the graph is always concave down. Here is a graph of f* with the transition point highlighted.

-

2 4 6 8 10 12 14 16

—_ N W s
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27. y =x(8 —x)1/3
SOLUTION Let f(x) =x (8 — x)1/3. Then

24 — 4x

S0 =x-368-0)PEn+E-0"3 1= T

and similarly

g dx—48
f (x)_9(8_x)5/3'

Critical points are at x = 8 and x = 6, and candidate inflection points are x = 8 and x = 12. Sign analyses reveal that f’(x)
changes from positive to negative at x = 6 and f’(x) remains negative on either side of x = 8. Moreover, f”/(x) changes from
negative to positive at x = 8 and from positive to negative at x = 12. Therefore, f has a local maximum at x = 6 and inflection
points at x = 8 and x = 12. Moreover,

lim f(x) = —o0.
x—Fo00

Here is a graph of f with the transition points highlighted.

28. y = (x2 —4)6)1/3

SOLUTION Let f(x) = (x2 — 4x)/3. Then
/ 2 2 —2/3
@) = 3(x = 2)(x" —4x)
and

£y = % ((xz 423 g(x _ 22— 4x)_5/3)

g(ﬁ —4x)75/3 (3(x2 —4x) —4(x — 2)2) - —g(xz —4x)75/3(x2 —4x + 16).

Critical points of f(x) are x = 2 (where the derivative is zero) an x = 0 and x = 4 (where the derivative does not exist); candidate
points of inflection are x = 0 and x = 4. Sign analyses reveal that /”(x) < 0 for x < 0 and for x > 4, while f/”(x) > 0 for
0 < x < 4. Therefore, the graph of f(x) has points of inflection at x = 0 and x = 4. Since (xZ — x)_2/3 is positive wherever it
is defined, the sign of f’(x) depends solely on the sign of x — 2. Hence, f/(x) does not change sign at x = 0 or x = 4, and goes
from negative to positive at x = 2. f(2) is, in that case, a local minimum. Moreover,

li = 00.
x—:I:}:loo J(x) =00

Here is a graph of f(x) with the transition points indicated.

x2

29. y = xe™
SOLUTION Let f(x) = xe™* . Then

f(x) = 2o p e = (1 —2x2)e_x2,
and

F(x) = (4x3 — 2x)e_x2 —4xe " = 2x(2x2 — 3)e_x2.
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There are critical points at x = ﬂ:%, and x = Oand x = :i:“/T§ are candidates for inflection points. Sign analysis shows that
f'(x) changes from negative to positive at x = —4 and from positive to negative at x = “/TE Moreover, f”/(x) changes from
negative to positive at both x = :i:“/T§ and from positive to negative at x = 0. Therefore, f has a local minimum at x = —4, a

2

local maximum at x = 5= and inflection points at x = 0 and at x = ﬂ:@. Moreover,
lim f(x) =0,
x—+o00

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.

30. y = (2x2 — l)e_"2

SOLUTION Let f(x) = (2x2 — 1)e™*". Then

fl(x) =(@2x — 4x3)e_)‘2 tdxe* = 2x(3 — 2x2)e_x2,
and
) = Bx* —12x2)e ™ + (6 — 12x2)e ™™ = 2(4x* — 1242 + 3)e ™",

There are critical points at x = 0 and x = :I:@, and

_ 3+ve o 3-ve o [3-V6  [3+46
X =— ’ , X =— 2 , X = 2 , X = 2

are candidates for inflection points. Sign analysis shows that f’(x) changes from positive to negative at x = :i:§ and from
negative to positive at x = 0. Moreover, f”(x) changes from positive to negative at x = —y/ % and at x = 4/ 3_T¢3 and from

negative to positive at x = —1/ 3_—2“/6 and at x = 4/ #g. Therefore, f has local maxima at x = i@, a local minimum at
3+/6
2

x = 0 and points of inflection at x = £ . Moreover,
lim f(x) =0,
x—>to0

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.

3. y=x—-2Inx
SOLUTION Let f(x) = x —2Inx. Note that the domain of f is x > 0. Now,
2 2
ff)y=1-= and [f"(x)= .
X X

The only critical point is x = 2. Sign analysis shows that f’/(x) changes from negative to positive at x = 2, so f (2) is a local
minimum. Further, f/”/(x) > 0 for x > 0, so the graph is always concave up. Moreover,

xl_i)moo f(x) = oo.

Here is a graph of f with the transition points highlighted.
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s~ & =

32. y=x(4—x)—3Inx
SOLUTION Let f(x) = x(4 —x) — 31Inx. Note that the domain of f is x > 0. Now,

3 3
flx)=4—-2x—-" and f/’(x)=—2+—2.
x X

Because f/(x) < 0 for all x > 0, the graph is always decreasing. On the other hand, f”'(x) changes from positive to negative at

X = \/g, so there is a point of inflection at x = \/g . Moreover,

li = d li = —o0,
A SO0 =00 and -l 09 = —o0

so f has a vertical asymptote at x = 0. Here is a graph of f with the transition points highlighted.

33. y=x—x2Inx

SOLUTION Let f(x) = x —xZInx. Then f'(x) = 1 —x —2xInx and f”(x) = —3 — 2Inx. There is a critical point at x = 1,
and x = e~3/2 & 0.223 is a candidate inflection point. Sign analysis shows that f/(x) changes from positive to negative at x = 1
and that f”(x) changes from positive to negative at x = e3/2, Therefore, f has a local maximum at x = 1 and a point of

inflection at x = e 3 . MOI‘COVGI‘,
lim X) = —0OQ.

Here is a graph of f with the transition points highlighted.

05 1.0 15

-2

—4

-6
34. y =x—2In(x% + 1)
SOLUTION Let f(x) = x —2In(x? 4 1). Then f/(x) =1— 247)(, and

x<+1
ey - (P D@ — (40)Qx) 42— 1)
S == (2 +1)2 BRI

There are critical points at x = 2 & +/3, and x = %1 are candidates for inflection points. Sign analysis shows that f”(x) changes
from positive to negative at x = 2 — +/3 and from negative to positive at x = 2 + /3. Moreover, f”(x) changes from positive to
negative at x = —1 and from negative to positive at x = 1. Therefore, f has a local maximum at x = 2 — /3, a local minimum at
x = 2 4 +/3 and points of inflection at x = 1. Finally,

xlylloo f(x) =—o0 and xlgnoo f(x) = o0.

Here is a graph of f with the transition points highlighted.
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35. Sketch the graph of f(x) = 18(x —3)(x — 1)2/3 using the formulas

30(x — 2) 20(x — 3)
1 _ 5 " _ 5
f (.X)— (X—1)1/37 f (.X)— (X—1)4/3
SOLUTION
30(x — 2)
1 _ 5
f (X)— (X—1)1/3
yields critical points at x = %, x =1
20(x — 2)
" _ 5
f (X) - ()C _ 1)4/3

: e : : _3 . _
yields potential inflection points at x = z, x = 1.

Interval | signs of f/ and f”
(—00. 3) +-
.1 ++
(1, 2) —+
(2.00) ++

The graph has an inflection point at x = %, a local maximum at x = 1 (at which the graph has a cusp), and a local minimum at
X = %. The sketch looks something like this.

36. Sketch the graph of f(x) = ZL—I—I using the formulas
X

1—x2 _ 2x(x2-3)

S/ (X)st S/ (X)_W

X
X241

SOLUTION Let f(x) =

e Because lim f(x) = % . lim x"'=o, y = 0 is a horizontal asymptote for f".

x—>Fo0 x—Fo0
42
e Now f/(x) = W is negative for x < —1 and x > 1, positive for —1 < x < I, and 0 at x = £1. Accordingly, f is
x=+1
decreasing for x < —1 and x > 1, is increasing for —1 < x < 1, has a local minimum value at x = —1 and a local maximum
value at x = 1.
e Moreover,
2x (x2 =3
= 202
(x2+1)

Here is a sign chart for the second derivative, similar to those constructed in various exercises in Section 4.4. (The legend is
on page 408.)

o) [ [ (59 o[ (0v9) [ 3] (v2)
" - 0 + 0 - 0 +
S ~ I ~ I ~ I ~

e Here is a graph of f(x) =

X241
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CAYS  In Exercises 37-40, sketch the graph of the function, indicating all transition points. If necessary, use a graphing utility or
computer algebra system to locate the transition points numerically.

37. y =x2—10In(x2 + 1)
20x

SOLUTION Let f(x) = x2 —10In(x2 + 1). Then f”(x) = 2x — 21
X

and

ey = 2 G20~ Q0)Qx) _ x* 1242 —9
R (x2 +1)2 T (x2+1)2

There are critical points at x = 0 and x = +3, and x = £+/—6 + 3/5 are candidates for inflection points. Sign analysis shows
that f/(x) changes from negative to positive at x = #+3 and from positive to negative at x = 0. Moreover, f”/(x) changes from
positive to negative at x = —+/—6 + 3+/5 and from negative to positive at x = +/—6 + 3+/5. Therefore, f has a local maximum
at x = 0, local minima at x = +3 and points of inflection at x = £+/—6 + 3+/5. Here is a graph of f with the transition points
highlighted.

38. y = e/ 2Inx

SOLUTION Let f(x) = ¢~*/2Inx. Then

e—x/Z

[ =

X

and

There is a critical point at x = 2.345751 and a candidate point of inflection at x = 3.792199. Sign analysis reveals that f’(x)
changes from positive to negative at x = 2.345751 and that f”(x) changes from negative to positive at x = 3.792199. Therefore,
f has a local maximum at x = 2.345751 and a point of inflection at x = 3.792199. Moreover,

xgrg_i_ f(x) =—o0 and xll>moo f(x)=0.

Here is a graph of f with the transition points highlighted.

39 y=x*—4x2 4 x+1
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SOLUTION Let f(x) = x* —4x% 4+ x + 1. Then f’/(x) = 4x3 —8x + 1 and f”(x) = 12x2 — 8. The critical points are
x = —1.473, x = 0.126 and x = 1.347, while the candidates for points of inflection are x = :I:\/g . Sign analysis reveals that

f’(x) changes from negative to positive at x = —1.473, from positive to negative at x = 0.126 and from negative to positive
at x = 1.347. For the second derivative, f”(x) changes from positive to negative at x = —\/g and from negative to positive at
X = \/g . Therefore, f has local minima at x = —1.473 and x = 1.347, a local maximum at x = 0.126 and points of inflection at

X = ﬂ:\/g . Moreover,

lim f(x) = oo.

x—>to00

Here is a graph of f with the transition points highlighted.

40. y =2/x —sinx, 0<x <2m

SOLUTION Let f(x) = 2,/x —sinx. Then

1 1
'(x) = —= —cosx and "(x) = —=x"3? 4+ sinx.
ro=r 10 ==
On 0 < x < 2, there is a critical point at x = 5.167866 and candidate points of inflection at x = 0.790841 and x = 3.047468.
Sign analysis reveals that f’(x) changes from positive to negative at x = 5.167866, while f”/(x) changes from negative to positive
at x = 0.790841 and from positive to negative at x = 3.047468. Therefore, f has a local maximum at x = 5.167866 and points
of inflection at x = 0.790841 and x = 3.047468. Here is a graph of f with the transition points highlighted.

y

L Y

In Exercises 41—46, sketch the graph over the given interval, with all transition points indicated.

41. y = x +sinx, [0,27x]

SOLUTION Let f(x) = x + sinx. Setting f’(x) = 1 + cosx = 0 yields cosx = —1, so that x = 7 is the lone critical point on
the interval [0, 27]. Setting f”/(x) = —sinx = 0 yields potential points of inflection at x = 0, 7, 27 on the interval [0, 27].

Interval | signs of f and f”
(0,m) +-
(7, 2m) ++

The graph has an inflection point at x = 7, and no local maxima or minima. Here is a sketch of the graph of f(x):

y

(SRR N
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42. y =sinx +cosx, [0,27]

SOLUTION Let f(x) = sinx + cosx. Setting f/(x) = cosx —sinx = 0 yields sinx = cosx, so that tanx = 1, and

x=1Z, 3T Setting £ (x) = —sinx — cos x = 0 yields sinx = — cos x, so that —tan x = 1, and x = 37”, X = 77”.
Interval | signs of f/ and f”
0. 7%) +-
(G —
CGF. ) —+
(CHN) ++
(ZZ . 2m) +—
The graph has a local maximum at x = %, a local minimum at x = ST”, and inflection points at x = 37” and x = 77”. Here is a

sketch of the graph of f(x):

43. y =2sinx —cos?x, [0,27]

SOLUTION Let f(x) = 2sinx — cos? x. Then f/(x) = 2cosx —2cosx (—sinx) = sin2x + 2cosx and f”(x) = 2cos2x —

2sinx. Setting f/(x) = 0 yields sin2x = —2cos x, so that 2sinx cosx = —2cos x. This implies cos x = 0 or sinx = —1, so
that x = 7 or 37” Setting f”(x) = 0 yields 2 cos2x = 2sinx, so that 2sin(} — 2x) = 2sinx, or 5 —2x = x =+ 2nz. This
yields 3x = % +2nmw,or x = %, 57”, 97” = 37”
Interval | signs of f’ and f”
0.%) =
(% 2) +-
5
(%) —
57 3
(¢ %) —+
(3. 27) ++
2 )
The graph has a local maximum at x = %, a local minimum at x = 37”, and inflection points at x = Z and x = 5?”. Here is a
graph of f* without transition points highlighted.
y
2
1
3
X
1 2 4 5 6
-1
-2
44. y =sinx + %x, [0,27]
SOLUTION Let f(x) = sinx + %x. Setting f/(x) = cosx + % = 0 yields x = 27” or 47”. Setting f”(x) = —sinx = 0 yields

potential points of inflection at x = 0, 7, 2.
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Interval | signs of f/ and f”
(0. %) +=
(%.7) —
(. %) —+
(4Z 27) ++
The graph has a local maximum at x = 27”, a local minimum at x = 47”, and an inflection point at x = m. Here is a graph of f

without transition points highlighted.

45. y =sinx + +/3cosx, [0,7]
SOLUTION Let f(x) = sinx 4+ ~/3cosx. Setting f/(x) = cosx — +/3sinx = 0 yields tanx = % In the interval [0, ],

the solution is x = Z. Setting f”(x) = —sinx — V3cosx = 0 vyields tanx = —+/3. In the interval [0,371], the lone solution is
=2
Interval signs of f/ and f”
(0,7/6) +—
(/6,2m/3) —
(2m/3, ) —+

The graph has a local maximum at x = % and a point of inflection at x = ZT” A plot without the transition points highlighted is
given below:

-2

46. y =sinx — %sin2x, [0, ]

SOLUTION Let f(x) = sinx — % sin2x. Setting f/(x) = cosx — cos2x = 0 yields cos 2x = cos x. Using the double angle
formula for cosine, this gives 2 cos? x — 1 = cosx or (2cosx 4 1)(cos x — 1) = 0. Solving for x € [0, ], we find x = 0 or ZT”

Setting f”(x) = —sinx + 2sin2x = 0 yields 4sin x cos x = sinx, so sinx = 0 or cosx = %. Hence, there are potential
points of inflection at x = 0, x = 7 and x = cos™! % ~ 1.31812.

Interval Sign of f” and f”
(0,cos™1 1) ++
(o ) | 4o

(5 .7) -

The graph of f(x) has a local maximum at x = ZT” and a point of inflection at x = cos™! %.
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X
0 1 2 3

47. & Are all sign transitions possible? Explain with a sketch why the transitions ++ — —+ and —— — +— do not occur
if the function is differentiable. (See Exercise 76 for a proof.)

SOLUTION Inboth cases, there is a point where f is not differentiable at the transition from increasing to decreasing or decreasing
to increasing.

X X

48. Suppose that f is twice differentiable satisfying (i) f(0) = 1, (ii) f/(x) > 0 for all x # 0, and (iii) f”'(x) < 0 for x < 0 and
f"(x)> 0forx > 0.Let g(x) = f(x?).

(a) Sketch a possible graph of f(x).

(b) Prove that g(x) has no points of inflection and a unique local extreme value at x = 0. Sketch a possible graph of g(x).
SOLUTION

(a) To produce a possible sketch, we give the direction and concavity of the graph over every interval.

Interval (—00,0) | (0,00)

Direction N ya

Concavity ~ ~

A sketch of one possible such function appears here:

v

(b) Let g(x) = f(x?). Then g’(x) = 2xf'(x?). If g’(x) = 0, either x = 0 or f’(x?) = 0, which implies that x = 0 as well.
Since f/(x2) > 0 forall x # 0, g’(x) < 0 for x < 0and g’(x) > 0 for x > 0. This gives g(x) a unique local extreme value
at x = 0, a minimum. g”(x) = 2f’'(x%) + 4x2 f”(x2). For all x # 0, x2 > 0, and so f”(x?) > 0 and f’(x2) > 0. Thus
g"(x) > 0, and so g”(x) does not change sign, and can have no inflection points. A sketch of g(x) based on the sketch we made
for f(x) follows: indeed, this sketch shows a unique local minimum at x = 0.

49. Which of the graphs in Figure 3 cannot be the graph of a polynomial? Explain.

y y y

FEEN

(&) ®) (©)
FIGURE 3
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SOLUTION Polynomials are everywhere differentiable. Accordingly, graph (B) cannot be the graph of a polynomial, since the
function in (B) has a cusp (sharp corner), signifying nondifferentiability at that point.

4 _
50. Which curve in Figure 4 is the graph of f(x) =

T+ x4 ? Explain on the basis of horizontal asymptotes.
X

<

(A) (B)
FIGURE 4
SOLUTION Since
-1 2
lim == =Z. Jim =2
x—>+oo 1 4 x4 1 x—+oo
41
the graph has left and right horizontal asymptotes at y = 2, so the left curve is the graph of f(x) = Tt
X
2
51. Match the graphs in Figure 5 with the two functions y = — ] andy = — T Explain.
X% — X% —
y y

.

1

X

(A) (B)

FIGURE 5
_ _ x2 3 3x2 ,
SOLUTION Since lim =—- lim 1 =3, the graphof y = has a horizontal asymptote of y = 3; hence,
x—+o0 x2 — 1 1 )§—>:|:oo x2—1
the right curve is the graph of f(x) = — T Since
X2 —
3 3
lim —— =2, lim x!=0
x—>+oo X2 — 1 I x—+4oco
3
the graph of y = — ol ] has a horizontal asymptote of y = 0; hence, the left curve is the graph of f(x) = — T
X% — X% —
52. Match the functions with their graphs in Figure 6.
@ y=— W=
YT =
1 X
= d =
(C)y )C2+1 ()y x2 -1

(A) (B) © (D)
FIGURE 6
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SOLUTION
(a) The graph of le—_l should have a horizontal asymptote at y = 0 and vertical asymptotes at x = £1. Further, the graph should

consist of positive values for |x| > 1 and negative values for |x| < 1. Hence, the graph of ﬁ is (D).

(b) The graph of x;‘—j_l should have a horizontal asymptote at y = 1 and no vertical asymptotes. Hence, the graph of x;‘—j_l is (A).
(¢) The graph of x++1 should have a horizontal asymptote at y = 0 and no vertical asymptotes. Hence, the graph of x21+1 is (B).
(d) The graph of ﬁ should have a horizontal asymptote at y = 0 and vertical asymptotes at x = =£1. Further, the graph should

consist of positive values for —1 < x < 0 and x > 1 and negative values for x < 1 and 0 < x < 1. Hence, the graph of ﬁ is

©.
In Exercises 53—70, sketch the graph of the function. Indicate the transition points and asymptotes.
1

53. y =
T
1 _
SOLUTION Let f(x) = FYa Then f/(x) = Ga 12 so that f is decreasing for all x # % Moreover, f”(x) =
X — X —
Gx—1)3’ so that f is concave up for x > % and concave down for x < % Because x_l)irjrtloo P 0, f has a horizontal
asymptote at y = 0. Finally, f has a vertical asymptote at x = % with
. 1
= —00 and lim =00
x—1- 3x -1 x—>d4 3x —1
y
5
|
| x
_2 | 2
i
-5
54,y =272
Y= x—=3
-2 -1 2
SOLUTION Let f(x) = Y72 Then f/(x) = ———, so that f is decreasing for all x # 3. Moreover, f”(x) = ———,
x—3 (x —3)2 (x=3)3
-2

so that f is concave up for x > 3 and concave down for x < 3. Because lim = 1, f has a horizontal asymptote at

x—>to0 X —3
y = 1. Finally, f has a vertical asymptote at x = 3 with

x—2 x—2

lim = —00 and lim = 00
x—>3—x—3 x—>3+x—3
y
[
I
51 :L
I
— —x
-2 2 : 4 6
-5 1 I
|
x+3
55. y =
Y x—2
x+3 , =5 ) . y 10
SOLUTION Let f(x) = ——. Then f'(x) = ————, so that f is decreasing for all x # 2. Moreover, f"(x) = ——,
x-2 (x —2)2 (x—=2)3
x4+ 3

so that f is concave up for x > 2 and concave down for x < 2. Because lirﬂrtl 7 = 1, f has a horizontal asymptote at
X—>*oo X —

y = 1. Finally, f has a vertical asymptote at x = 2 with

. x+3 . x+3
lim = —00 and lim
x—2—x—2 x—2+ x—2
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1
56. y =x+ —
X

SOLUTION Let f(x) = x + x 1. Then f/(x) = 1 — x 2, so that f is increasing for x < —1 and x > 1 and decreasing for
—1 <x <0and0 < x < 1. Moreover, f”(x) = 2x~3, so that f is concave up for x > 0 and concave down for x < 0. f has no
horizontal asymptote and has a vertical asymptote at x = 0 with

lim (x +x7!) = —00 and lim (x +x" 1) = oo
x—>0— x—>0+

1
x—1

1

1 1 2x2 —2x 41
SOLUTION Let f(x) = — + — . Then f’(x) = _x7x4—2’
x x—1 x2(x -1

2(2x3 —=3x2 +3x—1)
3x-13

1 1
< x < 1. Because lim (— + ) = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at
x—t+oo\x x-—1

=0and x = 1 with

so that f is decreasing for all x # 0, 1. Moreover,

, so that f is concave up for 0 < x < % and x > 1 and concave down for x < 0 and

1) =

1
2
X

1 1 1 1
lim (— + = -0 and lim [ — + =0
x—=0—\x x—1 x—=>0+\x x—1

and
1 1 1 1
lim (—+ )z—oo and lim (—+ ):OO.
x—>1-\x x—1 x—>1+\x x—1
¥
|
|
|
5}\ L
|
Y
_5 |
|
1
1 1
58. y = ——
x x—1

2x — 1 1

1 1
SOLUTION Let f(x) = Pl & Then f/(x) = so that f is decreasing for x < 0 and 0 < x < 5 and

x—1 x2(x— 1%
, , ) ” 2(3x2=3x + 1) ,
increasing for 5 < x < I and x > 1. Moreover, " (x) = —W, so that f is concave up for 0 < x < 1 and concave
x3(x —
1
down for x < 0 and x > 1. Because lim (— — ) = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical
x—>+oo \x x—1

asymptotes at x = 0 and x = 1 with

lim l— ! = -0 and lim l— ! =00
x—>0—\x x-—1 x>0+ \x x-—1

and

1 1 1 1
lim | — — = 0 and lim | —— = —00.
x—>1-\x x-1 x—>1+\x x-—1
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1
59. y= —
Y x(x —2)
1 , 2(1 —x) . . .
SOLUTION Let f(x) = ——. Then f'(x) = —————5, so that f is increasing for x < 0 and 0 < x < 1 and decreasing
x(x—2) x2(x —2)2
2(3x2 — 6x + 4
for I < x < 2and x > 2. Moreover, f”(x) = ()63(—)62;3—), so that f is concave up for x < 0 and x > 2 and concave down
x3(x —

for 0 < x < 2. Because lim

——— ) = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at
x—+oo \ X(x —2)

x = 0and x = 2 with

1 1
li — ) = d li — ) ==
x—1>n(}— (x(x — 2)) oo an x—1>1})l+ (x(x — 2)) o

and
. 1 . 1
lim ( ——— ) =—0o0 and lim | — ) = oc.
x—=2—\x(x —2) x—=2+ \ x(x —2)
¥
)
I
- : x
2 : 4
-5 1 |
I
60. y =
Y x2-9
X ’ x249 . . ”
SOLUTION Let f(x) = .Then f'(x) = ———=——, so that f is decreasing for all x # £3. Moreover, " (x) =
x2-9 (x2—-9)2

so that f is concave down for x < —3 and for 0 < x < 3 and is concave up for —3 < x < 0 and for x > 3. Because

lim % = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = %3, with
x—>+o0 x* —9

lim ( o )z—oo and lim ( o >=oo
x—>—3—\x2-9 x—>—3+\x2 -9

and
lim( ol ):—oo and lim( al ):oo.
x—>3—\x2 -9 x—3+\x2 -9
y
10
| + | X
-4Y-2 2 Y 4
-10
6l. y= 5———
Y= 6x+8
SOLUTION Let f(x) ! ! Then f'(x) 62 that £ is i ing fi <2
et f(x) = = . Then f'(x) = ———, so that f is increasing for x
x2—6x+8 (x=2)(x—4) (x2—6x+8)2
and for 2 < x < 3, is decreasing for 3 < x < 4 and for x > 4, and has a local maximum at x = 3. Moreover,
” 2(3x2 — 18x +28) , _
f(x) = 3 so that f is concave up for x < 2 and for x > 4 and is concave down for 2 < x < 4. Be-
(x2 —6x +8)
cause lim —————— = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 2 and x = 4,
x—+o00 X2 —6x + 8
with
. 1 . 1
lm | 57— ) =00 and lim | V—— | =—-
x—>2-\x2 —6x+8 x—>24+ \x2 —6x + 8
and

6x(x2 + 6)
(293
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x3+1
X

62. y =

x34+1
X
3/1/2 and increasing for x > 3/1/2. Moreover, f”(x) = 24 2x 73, so f is concave up for x < —1 and for x > 0 and concave
down for —1 < x < 0. Because

SOLUTION Let f(x) = = x2 4+ x~ 1. Then f’(x) = 2x — x 2, so that f is decreasing for x < 0 and for 0 < x <

lim
x—>+o00 X

/ has no horizontal asymptotes. Finally, f has a vertical asymptote at x = 0 with

. x3+1 . x3+1
lim = -0 and lim = 00.
x—0— X x—0+ X
y
20
10
+ + Py
-4 2 2 4
-10
-20

34
63. y=1->+—
X X

3 4
SOLUTION Let f(x) =1 — — + —. Then
X X

12 3(x—-2)(x+2)
[ T

)

3
/
X)=— —
fl0 =
so that f is increasing for |x| > 2 and decreasing for —2 < x < 0 and for 0 < x < 2. Moreover,

6 48  6(8 —x2
f//(x):_xi_l—x?zw

)

x5

so that f is concave down for —2+/2 < x < 0 and for x > 2+/2, while f is concave up for x < —2+/2 and for 0 < x < 2+/2.
Because

. 3 4
lim 1—-—+—=)=1,
x—>to00 X x3

f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 0 with

. 3.4 ) 3 4
Iim (1—-—+ — ) =- and Iim [1—— 4+ — | =oc.
x—>0— X x3 x—0-+ X x3

y
6
4

_/\2 —_—

6 -4 2 2 4 6
2

X

-6
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1 1
64 y= — + ——
Y= + (x —2)2
1
SOLUTION Let f(x) = — + ———.Then
fW= G+

LA -2 20+ 4)

flr)y==-2x3-2(x-23= e =27

)

so that f" is increasing for x < 0 and for 1 < x < 2, is decreasing for 0 < x < 1 and for x > 2, and has a local minimum at x = 1.
1 1
Moreover, " (x) = 6x 4 +6 (x — 2)™4, so that f is concave up for all x # 0,2. Because lim |(—+-——5] =0, f
x—>+oo \ X2 (x —2)2
has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 2 with

1 1 1 1
lim (= +——0 ) = d  lim (> +—)=
50— (x2 + (x —2)2) o X0+ (x2 * (x —2)2) >

and
li ! + ! d li ! + !
im ([ +——— )= an im (—+——— | =occ.
x—2—\x2  (x—=2)2 x—=>2+\x2  (x—2)2 o
¥
1
|
|
|
1
21
2 -l T2 3 4
1 1
65. y =

X2 (x—2)2

1 1
SOLUTION Let f(x) = - - j Then f/(x) = —2x 342 (x — 2)_3, so that f is increasing for x < 0 and for x > 2
X

(x —
and is decreasing for 0 < x < 2. Moreover,
48(x — 1) (x2 =2x 4+ 2)
x*(x —2)4

f(x) = 6x"*—6 (x — )4 =

)

so that f is concave up for x < 0 and for 0 < x < 1, is concave down for I < x < 2 and for x > 2, and has a point of inflection
1 1
atx = 1. Because lim | — — ——— | = 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at
x—+oo \ x2 (x — 2)2
x =0and x = 2 with

1 1 1 1
li s —— li _ _
x50 (x2 (x — 2)2) > and x50+ (x2 (x— 2)2) >

and
i 1 1 d . 1 1
im |[w——)=-0 an m [|—5—-———5|)=—c.
x—2-\x2 (x—2)2 x—>24+ \x2  (x—2)2 o
v
S\
2 3 4
F t f t X
2 - |
24 i
4} |
66. y =
YT 2
4
SOLUTION Let f(x) = Z 9 Then f/(x) = —W, so that f is increasing for x < —3 and for =3 < x < 0, is
X = x2 -9

24 (x2 +3)

, so that f is
(=9’

decreasing for 0 < x < 3 and for x > 3, and has a local maximum at x = 0. Moreover, f”(x) =
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concave up for x < —3 and for x > 3 and is concave down for —3 < x < 3. Because lim >
x—do00 X —9

= 0, f has a horizontal

asymptote at y = 0. Finally, f has vertical asymptotes at x = —3 and x = 3, with

4 4
lim =00 and lim = —00
x—>-3—\x2-9 x—>—3+\x2 -9

and

1
67 y= —
Y2
L Then £/(x)
A A~ - en X) =
(x2+1)2

has a local maximum at x = 0. Moreover,

SOLUTION Let f(x) = so that f is increasing for x < 0, is decreasing for x > 0 and

—4x
(2 4+ 13

piy_ THZ DR 4 A 32+ 1220 2007 —4
1) = = :
: (x2+1)° (x2 4+ 14

so that f is concave up for |x| > 1/+/5, is concave down for |x| < 1/+/5, and has points of inflection at x = =41/+/5. Because

lim ——— =0, f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.
x—Foo (x* + 1)

-4 =2 2 4
X2
x2-DExZ2+1

SOLUTION Let

68. y =

x2

=y

Then

2x(1 4 x*%)

SO = Ty PG T DT

so that f' is increasing for x < —1 and for —1 < x < 0, is decreasing for 0 < x < 1 and for x > 1, and has a local maximum at
x = 0. Moreover,

2+ 24x* + 6x8

U T TeC I b

x2

so that f is concave up for |x| > 1 and concave down for |x| < 1. Because lim —————— = 0, f has a horizontal
x—*o00 (x2 - 1)()62 +1)
asymptote at y = 0. Finally, f has vertical asymptotes at x = —1 and x = 1, with

x2 x2

lim — > = d lim =
eai T YRR L S i W A DY PR
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and
m ¢ dm
Pl 2Z-1)(x2+1) an Pt *2-Dx2+1) o
I y [
| I
L2
| |
b
! ! !
2 -l P

-1\
| |
(27 |
! !

69 = !

SRV

SOLUTION Let f(x) = «/x%l Then

X
S0 = e = (2 + )7,

so that f is increasing for x < 0 and decreasing for x > 0. Moreover,

£ (x) = —%x(xz + 1732 2x) - (2 + )72 = 22— (2 4+ )72,

so that f is concave down for |x| < 4 and concave up for |x| > 4 Because
1
lim —— =0,
x—too /x2 + 1

f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

¥
1

038
0.2
10 -5 s 10
70, y = —
o x2 41
SOLUTION Let
X
() = —~ .
4 Vx2 41
Then
—3x
')=x2+ 17?2 and f(x)= —— .
Sx)=( ) ST (x) 21 152

457

Thus, f is increasing for all x, is concave up for x < 0, is concave down for x > 0, and has a point of inflection at x = 0. Because

lim ——~ =1 and lim ——> = _
X—>00 x2 +1 X—>—00 x2 +1

f has horizontal asymptotes of y = —1 and y = 1. There are no vertical asymptotes.
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Further Insights and Challenges

In Exercises 71-75, we explore functions whose graphs approach a nonhorizontal line as x — 00. A line y = ax + b is called a
slant asymptote if

lim (/) = (ax + ) = 0

or
im (f(x) = (ax +0)) =0
)C2
71. Let f(x) = 1 (Figure 7). Verity the following:
x —

(a) f(0)is alocal max and f(2) a local min.
(b) f is concave down on (—oo, 1) and concave up on (1, 00).
(¢ lim f(x)=-occand lim f(x)= ococ.
x—>1— x—>1+
(d) y = x + 1is aslant asymptote of f(x) as x — Fo0.
(e) The slant asymptote lies above the graph of f(x) for x < 1 and below the graph for x > 1.

y
101 |
|
I Ee
+/ \y:x+1 .
102~ | 10
=~ |
|
-0 |
FIGURE 7
x2 , x(x—2) . 2
SOLUTION Let f()C) = Y1 . Then f ()C) = m and f (X) = m

(a) Critical points of f’(x) occur at x = 0 and x = 2. x = 1 is not a critical point because it is not in the domain of /. Sign
analyses reveal that x = 2 is a local minimum of f" and x = 0 is a local maximum.

(b) Sign analysis of f”/(x) reveals that f”(x) < 0on (—oo, 1) and f”(x) > 0 on (1, 00).

(©
li =—1 1 =— d i =1 I =
A=y T T e o B W= A
x2 1
(d) Note that wusing polynomial division,  f(x) = 1 = x + 1 + Then
X — X —

1 1
lim (f(x)—(x+1)= lim x+1+— —(x+1)= lim =0
x—>to00 x—>to00 x—1

x—toox — 1 -

1
() Forx > 1, fx)—(x+1) = P > 0, so f(x) approaches x + | from above. Similarly, for x < I, f(x) — (x + 1) =
x —

1
o < 0,50 f(x) approaches x + 1 from below.
X —

72. & If f(x) = P(x)/Q(x), where P and Q are polynomials of degrees m + 1 and m, then by long division, we can write
f(x) = (ax +b) + P1(x)/Q(x)

where Pj is a polynomial of degree < m. Show that y = ax + b is the slant asymptote of f(x). Use this procedure to find the
slant asymptotes of the following functions:
2 X34+ x

= b) y= —— "
@y=""7 ® =

SOLUTION Since deg(P;) < deg(Q),

Pi(x)
im =0
x—=+oo Q(x)

Thus

lirﬂrtl (f(x)—(ax+b) =0

and y = ax + b is a slant asymptote of f.
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())€2 14— h 2 is a slant fote of
a =x— —— hence y = x — 2 is a slant asymptote o .
x+2 x+2 Y yop x+2
3 3
x° 4+ x x+1 x° +x
b) ———=(x-1 ———; hence, y = x — 1 is a slant asymptote of ————.
® o TeT D e J ymp 2gxt1
73. Sketch the graph of
2
X
X) = .
) ==
Proceed as in the previous exercise to find the slant asymptote.
2
X x(x+2) 2 L. .
SOLUTION Let f(x) = ——. Then f/(x) = ——————2 and f”(x) = ————. Thus, f is increasing for x < —2 and for
fx) T S(x) Gt 12 S7(x) EFEE S g
x > 0, is decreasing for —2 < x < —1 and for —1 < x < 0, has a local minimum at x = 0, has a local maximum at x = —2, is
concave down on (—oo, —1) and concave up on (—1, co). Limit analyses give a vertical asymptote at x = —1, with
2 2
lim I —00 and lim SR 0.
x—>—1-x +1 x—>—1+x+1

By polynomial division, f(x) =x —1+ and

x+1

1
lim (x—1+7—(x—1))=0,
x—Fo00 x+1

which implies that the slant asymptote is y = x — 1. Notice that f approaches the slant asymptote as in exercise 71.

¥

\
i
‘
‘
‘
‘
‘
‘
3 .
-4 2 1t 2 4
P )

A\

74. Show that y = 3x is a slant asymptote for f(x) = 3x + x 2. Determine whether f(x) approaches the slant asymptote from
above or below and make a sketch of the graph.

SOLUTION Let f(x) = 3x + x~2. Then

lim (f(x)=3x)= lim BGx+x2-3x)= lim x 2=0
x—Fo00 x—>to00 x—>Fo00

which implies that 3x is the slant asymptote of f(x). Since f(x) —3x = x~2 > 0 as x — o0, f(x) approaches the slant
asymptote from above in both directions. Moreover, f/(x) = 3 —2x73 and f”(x) = 6x~*. Sign analyses reveal a local minimum

-1/3
atx = (%) ~ 0.87358 and that f is concave up for all x # 0. Limit analyses give a vertical asymptote at x = 0.

1—x2

75. Sketch the graph of f(x) = 5 .
—Xx

1—x2
SOLUTION Let f(x) = 5

3
. Using polynomial division, f(x) = x +2 + Pt Then
—x X —

3 3 3
lim (f(x)—(x+2)= lim ((x +2)+ ——-(x+ 2)) = lim =2. lim x'=0
x—+o0 x—>*+o0 x—2

x—too x —2 1 x—>+o00

3
which implies that y = x + 2 is the slant asymptote of f(x). Since f(x) — (x +2) = P > 0 for x > 2, f(x) approaches
X —

3
the slant asymptote from above for x > 2; similarly, P < 0 for x < 2s0 f(x) approaches the slant asymptote from below
X —
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2

4y 41 —6

ol and f”'(x) = ———. Sign analyses reveal a local minimum at x = 2 + /3, a
2-x)? 2-x)3

local maximum at x = 2 — +/3 and that f is concave down on (—oo, 2) and concave up on (2, 00). Limit analyses give a vertical

asymptote at x = 2.

for x < 2. Moreover, f/(x) =

y

|
!
‘
‘
‘
i
-10 -5 4705 10
' X
i
‘
‘
|
‘
‘
‘

76. Assume that f’(x) and f”(x) exist for all x and let ¢ be a critical point of f(x). Show that f(x) cannot make a transition
from ++ to —+ at x = c. Hint: Apply the MVT to f”(x).

SOLUTION Let f(x) be a function such that f”(x) > 0 for all x and such that it transitions from ++ to —+ at a critical point
¢ where f/(c) is defined. That is, f/(c¢) = 0, f/(x) > 0 for x < ¢ and f’(x) < O for x > ¢. Let g(x) = f’(x). The previous
statements indicate that g(c) = 0, g(xg) > 0 for some x¢ < ¢, and g(x1) < 0 for some x; > c. By the Mean Value Theorem,

glx1)—glxo)
——— =¢g'(co):
X1 — X0

for some ¢ between xg and x1. Because x; > ¢ > xg and g(x1) < 0 < g(x0),

g(x1) — g(xo) <.
X1 — X0

But, on the other hand g’(co) = f”(co) > 0, so there is a contradiction. This means that our assumption of the existence of such a
function f(x) must be in error, so no function can transition from ++ to —+.

If we drop the requirement that f”(c) exist, such a function can be found. The following is a graph of f(x) = —x2/3, f7(x)>0
wherever f”/(x) is defined, and f/(x) transitions from positive to negative at x = 0.

-0.8

77. & Assume that f”/(x) exists and f”(x) > 0 for all x. Show that f(x) cannot be negative for all x. Hint: Show that
/' (b) # 0 for some b and use the result of Exercise 64 in Section 4.4.

SOLUTION Let f(x) be a function such that f”(x) exists and f”(x) > 0 for all x. Since f”(x) > 0, there is at least one
point x = b such that f'(b) # 0. If not, f'(x) = 0 for all x, so f”(x) = 0. By the result of Exercise 64 in Section 4.4,
f(x) > f(b) + f'(b)(x — b). Now, if f’(b) > 0, we find that f(b) + f/(b)(x —b) > 0 whenever
- bf'(b) — f(b)

£y
a condition that must be met for some x sufficiently large. For such x, f(x) > f(b) + f'(b)(x —b) > 0. On the other hand, if
f'(b) < 0, we find that f(b) + f/(b)(x — b) > 0 whenever

bf'(b) — f(b)
.x < /70

S'(b)

For such an x, f(x) > f(b) + f/(b)(x —b) > 0.



