$$= \lim_{x \to 0} \frac{4\sin 2x}{-4x^2 \sin 2x + 4x \cos 2x + 8x \cos 2x + 4 \sin 2x + 4 \sin x \cos x}$$

=
$$\lim_{x \to 0} \frac{4\sin 2x}{(6 - 4x^2) \sin 2x + 12x \cos 2x}$$

=
$$\lim_{x \to 0} \frac{8\cos 2x}{(12 - 8x^2)\cos 2x - 8x \sin 2x + 12\cos 2x - 24x \sin 2x} = \frac{1}{3}.$$

Numerically we find:

x	1	0.1	0.01
$\frac{1}{\sin^2 x} - \frac{1}{x^2}$	0.412283	0.334001	0.333340

80. In the following cases, check that x = c is a critical point and use Exercise 75 to determine whether f(c) is a local minimum or a local maximum.

(a) $f(x) = x^5 - 6x^4 + 14x^3 - 16x^2 + 9x + 12$ (c = 1) (b) $f(x) = x^6 - x^3$ (c = 0)

SOLUTION

(a) Let $f(x) = x^5 - 6x^4 + 14x^3 - 16x^2 + 9x + 12$. Then $f'(x) = 5x^4 - 24x^3 + 42x^2 - 32x + 9$, so f'(1) = 5 - 24 + 42 - 32 + 9 = 0 and c = 1 is a critical point. Now,

$$f''(x) = 20x^3 - 72x^2 + 84x - 32 \text{ so } f''(1) = 0;$$

$$f'''(x) = 60x^2 - 144x + 84 \text{ so } f'''(1) = 0;$$

$$f^{(4)}(x) = 120x - 144 \text{ so } f^{(4)}(1) = -24 \neq 0.$$

Thus, n = 4 is even and $f^{(4)} < 0$, so f(1) is a local maximum. (b) Let $f(x) = x^6 - x^3$. Then, $f'(x) = 6x^5 - 3x^2$, so f'(0) = 0 and c = 0 is a critical point. Now,

$$f''(x) = 30x^4 - 6x \text{ so } f''(0) = 0;$$

$$f'''(x) = 120x - 6 \text{ so } f'''(0) = -6 \neq 0.$$

Thus, n = 3 is odd, so f(0) is neither a local minimum nor a local maximum.

4.6 Graph Sketching and Asymptotes

Preliminary Questions

1. Sketch an arc where f' and f'' have the sign combination ++. Do the same for -+.

SOLUTION An arc with the sign combination ++ (increasing, concave up) is shown below at the left. An arc with the sign combination -+ (decreasing, concave up) is shown below at the right.

2. If the sign combination of f' and f'' changes from ++ to +- at x = c, then (choose the correct answer):

(a) f(c) is a local min

(c) c is a point of inflection

SOLUTION Because the sign of the second derivative changes at x = c, the correct response is (c): c is a point of inflection.

3. The second derivative of the function $f(x) = (x - 4)^{-1}$ is $f''(x) = 2(x - 4)^{-3}$. Although f''(x) changes sign at x = 4, f(x) does not have a point of inflection at x = 4. Why not?

(b) f(c) is a local max

SOLUTION The function f does not have a point of inflection at x = 4 because x = 4 is not in the domain of f.

Exercises

1. Determine the sign combinations of f' and f'' for each interval A-G in Figure 1.

SOLUTION

- In A, f is decreasing and concave up, so f' < 0 and f'' > 0.
- In B, f is increasing and concave up, so f' > 0 and f'' > 0.
- In C, f is increasing and concave down, so f' > 0 and f'' < 0.
- In D, f is decreasing and concave down, so f' < 0 and f'' < 0.
- In E, f is decreasing and concave up, so f' < 0 and f'' > 0.
- In F, f is increasing and concave up, so f' > 0 and f'' > 0.
- In G, f is increasing and concave down, so f' > 0 and f'' < 0.
- 2. State the sign change at each transition point A-G in Figure 2. Example: f'(x) goes from + to at A.

SOLUTION

- At A, the graph changes from increasing to decreasing, so f' goes from + to -.
- At B, the graph changes from concave down to concave up, so f'' goes from to +.
- At C, the graph changes from decreasing to increasing, so f' goes from to +.
- At D, the graph changes from concave up to concave down, so f'' goes from + to -.
- At E, the graph changes from increasing to decreasing, so f' goes from + to -.
- At F, the graph changes from concave down to concave up, so f'' goes from to +.
- At G, the graph changes from decreasing to increasing, so f' goes from to +.

In Exercises 3–6, draw the graph of a function for which f' and f'' take on the given sign combinations.

3. ++, +-, --

SOLUTION This function changes from concave up to concave down at x = -1 and from increasing to decreasing at x = 0.

4. +-, --, -+

SOLUTION This function changes from increasing to decreasing at x = 0 and from concave down to concave up at x = 1.

5. -+, --, -+

SOLUTION The function is decreasing everywhere and changes from concave up to concave down at x = -1 and from concave down to concave up at $x = -\frac{1}{2}$.

6. -+, ++, +-

SOLUTION This function changes from decreasing to increasing at x = 0 and from concave up to concave down at x = 1.

7. Sketch the graph of $y = x^2 - 5x + 4$.

SOLUTION Let $f(x) = x^2 - 5x + 4$. Then f'(x) = 2x - 5 and f''(x) = 2. Hence f is decreasing for x < 5/2, is increasing for x > 5/2, has a local minimum at x = 5/2 and is concave up everywhere.

8. Sketch the graph of $y = 12 - 5x - 2x^2$.

SOLUTION Let $f(x) = 12 - 5x - 2x^2$. Then f'(x) = -5 - 4x and f''(x) = -4. Hence f is increasing for x < -5/4, is decreasing for x > -5/4, has a local maximum at x = -5/4 and is concave down everywhere.

9. Sketch the graph of $f(x) = x^3 - 3x^2 + 2$. Include the zeros of f(x), which are x = 1 and $1 \pm \sqrt{3}$ (approximately -0.73, 2.73).

SOLUTION Let $f(x) = x^3 - 3x^2 + 2$. Then $f'(x) = 3x^2 - 6x = 3x(x - 2) = 0$ yields x = 0, 2 and f''(x) = 6x - 6. Thus f is concave down for x < 1, is concave up for x > 1, has an inflection point at x = 1, is increasing for x < 0 and for x > 2, is decreasing for 0 < x < 2, has a local maximum at x = 0, and has a local minimum at x = 2.

10. Show that $f(x) = x^3 - 3x^2 + 6x$ has a point of inflection but no local extreme values. Sketch the graph.

SOLUTION Let $f(x) = x^3 - 3x^2 + 6x$. Then $f'(x) = 3x^2 - 6x + 6 = 3((x-1)^2 + 1) > 0$ for all values of x and f''(x) = 6x - 6. Hence f is everywhere increasing and has an inflection point at x = 1. It is concave down on $(-\infty, 1)$ and concave up on $(1, \infty)$.

11. Extend the sketch of the graph of $f(x) = \cos x + \frac{1}{2}x$ in Example 4 to the interval $[0, 5\pi]$.

SOLUTION Let $f(x) = \cos x + \frac{1}{2}x$. Then $f'(x) = -\sin x + \frac{1}{2} = 0$ yields critical points at $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{25\pi}{6}$, and $\frac{29\pi}{6}$. Moreover, $f''(x) = -\cos x$ so there are points of inflection at $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$, and $\frac{9\pi}{2}$.

12. Sketch the graphs of $y = x^{2/3}$ and $y = x^{4/3}$ SOLUTION

• Let $f(x) = x^{2/3}$. Then $f'(x) = \frac{2}{3}x^{-1/3}$ and $f''(x) = -\frac{2}{9}x^{-4/3}$, neither of which exist at x = 0. Thus f is decreasing and concave down for x < 0 and increasing and concave down for x > 0.

• Let $f(x) = x^{4/3}$. Then $f'(x) = \frac{4}{3}x^{1/3}$ and $f''(x) = \frac{4}{9}x^{-2/3}$. Thus f is decreasing and concave up for x < 0 and increasing and concave up for x > 0.

In Exercises 13–34, find the transition points, intervals of increase/decrease, concavity, and asymptotic behavior. Then sketch the graph, with this information indicated.

13. $y = x^3 + 24x^2$

SOLUTION Let $f(x) = x^3 + 24x^2$. Then $f'(x) = 3x^2 + 48x = 3x(x + 16)$ and f''(x) = 6x + 48. This shows that f has critical points at x = 0 and x = -16 and a candidate for an inflection point at x = -8.

Interval	$(-\infty, -16)$	(-16, -8)	(-8, 0)	$(0,\infty)$
Signs of f' and f''	+-		-+	++

Thus, there is a local maximum at x = -16, a local minimum at x = 0, and an inflection point at x = -8. Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \lim_{x \to \infty} f(x) = \infty.$$

Here is a graph of f with these transition points highlighted as in the graphs in the textbook.

14. $y = x^3 - 3x + 5$

SOLUTION Let $f(x) = x^3 - 3x + 5$. Then $f'(x) = 3x^2 - 3$ and f''(x) = 6x. Critical points are at $x = \pm 1$ and the sole candidate point of inflection is at x = 0.

Interval	$(-\infty, -1)$	(-1, 0)	(0,1)	$(1,\infty)$
Signs of f' and f''	+-		-+	++

Thus, f(-1) is a local maximum, f(1) is a local minimum, and there is a point of inflection at x = 0. Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \lim_{x \to \infty} f(x) = \infty.$$

Here is the graph of f with the transition points highlighted as in the textbook.

15. $y = x^2 - 4x^3$

SOLUTION Let $f(x) = x^2 - 4x^3$. Then $f'(x) = 2x - 12x^2 = 2x(1 - 6x)$ and f''(x) = 2 - 24x. Critical points are at x = 0 and $x = \frac{1}{6}$, and the sole candidate point of inflection is at $x = \frac{1}{12}$.

Interval	$(-\infty, 0)$	$(0, \frac{1}{12})$	$\left(\frac{1}{12}, \frac{1}{6}\right)$	$(\frac{1}{6},\infty)$
Signs of f' and f''	-+	++	+-	

Thus, f(0) is a local minimum, $f(\frac{1}{6})$ is a local maximum, and there is a point of inflection at $x = \frac{1}{12}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

Here is the graph of f with transition points highlighted as in the textbook:

16. $y = \frac{1}{3}x^3 + x^2 + 3x$

SOLUTION Let $f(x) = \frac{1}{3}x^3 + x^2 + 3x$. Then $f'(x) = x^2 + 2x + 3$, and f''(x) = 2x + 2 = 0 if x = -1. Sign analysis shows that $f'(x) = (x + 1)^2 + 2 > 0$ for all x (so that f(x) has no critical points and is always increasing), and that f''(x) changes from negative to positive at x = -1, implying that the graph of f(x) has an inflection point at (-1, f(-1)). Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \lim_{x \to \infty} f(x) = \infty$$

A graph with the inflection point indicated appears below:

17. $y = 4 - 2x^2 + \frac{1}{6}x^4$

SOLUTION Let $f(x) = \frac{1}{6}x^4 - 2x^2 + 4$. Then $f'(x) = \frac{2}{3}x^3 - 4x = \frac{2}{3}x(x^2 - 6)$ and $f''(x) = 2x^2 - 4$. This shows that f has critical points at x = 0 and $x = \pm \sqrt{6}$ and has candidates for points of inflection at $x = \pm \sqrt{2}$.

Interval	$(-\infty, -\sqrt{6})$	$(-\sqrt{6}, -\sqrt{2})$	$(-\sqrt{2}, 0)$	$(0, \sqrt{2})$	$(\sqrt{2},\sqrt{6})$	$(\sqrt{6},\infty)$
Signs of f' and f''	-+	++	+-		-+	++

Thus, f has local minima at $x = \pm \sqrt{6}$, a local maximum at x = 0, and inflection points at $x = \pm \sqrt{2}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

Here is a graph of f with transition points highlighted.

18. $y = 7x^4 - 6x^2 + 1$

SOLUTION Let $f(x) = 7x^4 - 6x^2 + 1$. Then $f'(x) = 28x^3 - 12x = 4x(7x^2 - 3)$ and $f''(x) = 84x^2 - 12$. This shows that f has critical points at x = 0 and $x = \pm \frac{\sqrt{21}}{7}$ and candidates for points of inflection at $x = \pm \frac{\sqrt{7}}{7}$.

Interval	$\left(-\infty, -\frac{\sqrt{21}}{7}\right)$	$(-\frac{\sqrt{21}}{7},-\frac{\sqrt{7}}{7})$	$(-\frac{\sqrt{7}}{7},0)$	$(0, \frac{\sqrt{7}}{7})$	$\left(\frac{\sqrt{7}}{7}, \frac{\sqrt{21}}{7}\right)$	$(\frac{\sqrt{21}}{7},\infty)$
Signs of f' and f''	-+	++	+-		-+	++

Thus, f has local minima at $x = \pm \frac{\sqrt{21}}{7}$, a local maximum at x = 0, and inflection points at $x = \pm \frac{\sqrt{7}}{7}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

Here is a graph of f with transition points highlighted.

19. $y = x^5 + 5x$

SOLUTION Let $f(x) = x^5 + 5x$. Then $f'(x) = 5x^4 + 5 = 5(x^4 + 1)$ and $f''(x) = 20x^3$. f'(x) > 0 for all x, so the graph has no critical points and is always increasing. f''(x) = 0 at x = 0. Sign analyses reveal that f''(x) changes from negative to positive at x = 0, so that the graph of f(x) has an inflection point at (0, 0). Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Here is a graph of f with transition points highlighted.

20. $y = x^5 - 15x^3$

SOLUTION Let $f(x) = x^5 - 15x^3$. Then $f'(x) = 5x^4 - 45x^2 = 5x^2(x^2 - 9)$ and $f''(x) = 20x^3 - 90x = 10x(2x^2 - 9)$. This shows that f has critical points at x = 0 and $x = \pm 3$ and candidate inflection points at x = 0 and $x = \pm 3\sqrt{2}/2$. Sign analyses reveal that f'(x) changes from positive to negative at x = -3, is negative on either side of x = 0 and changes from negative to positive at x = 3. The graph therefore has a local maximum at x = -3 and a local minimum at x = 3. Further sign

SECTION 4.6 Graph Sketching and Asymptotes 439

analyses show that f''(x) transitions from positive to negative at x = 0 and from negative to positive at $x = \pm 3\sqrt{2}/2$. The graph therefore has points of inflection at x = 0 and $x = \pm 3\sqrt{2}/2$. Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty$$

Here is a graph of f with transition points highlighted.

21. $y = x^4 - 3x^3 + 4x$

SOLUTION Let $f(x) = x^4 - 3x^3 + 4x$. Then $f'(x) = 4x^3 - 9x^2 + 4 = (4x^2 - x - 2)(x - 2)$ and $f''(x) = 12x^2 - 18x = 6x(2x - 3)$. This shows that f has critical points at x = 2 and $x = \frac{1 \pm \sqrt{33}}{8}$ and candidate points of inflection at x = 0 and $x = \frac{3}{2}$. Sign analyses reveal that f'(x) changes from negative to positive at $x = \frac{1 - \sqrt{33}}{8}$, from positive to negative at $x = \frac{1 + \sqrt{33}}{8}$, and again from negative to positive at x = 2. Therefore, $f(\frac{1 - \sqrt{33}}{8})$ and f(2) are local minima of f(x), and $f(\frac{1 + \sqrt{33}}{8})$ is a local maximum. Further sign analyses reveal that f''(x) changes from positive to negative at x = 0 and $x = \frac{3}{2}$, so that there are points of inflection both at x = 0 and $x = \frac{3}{2}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

Here is a graph of f(x) with transition points highlighted.

22. $y = x^2(x-4)^2$ SOLUTION Let $f(x) = x^2(x-4)^2$. Then

$$f'(x) = 2x(x-4)^2 + 2x^2(x-4) = 2x(x-4)(x-4+x) = 4x(x-4)(x-2)$$

and

$$f''(x) = 12x^2 - 48x + 32 = 4(3x^2 - 12x + 8)$$

Critical points are therefore at x = 0, x = 4, and x = 2. Candidate inflection points are at solutions of $4(3x^2 - 12x + 8) = 0$, which, from the quadratic formula, are at $2 \pm \frac{\sqrt{48}}{6} = 2 \pm \frac{2\sqrt{3}}{3}$. Sign analyses reveal that f'(x) changes from negative to positive at x = 0 and x = 4, and from positive to negative at x = 2.

Sign analyses reveal that f'(x) changes from negative to positive at x = 0 and x = 4, and from positive to negative at x = 2. Therefore, f(0) and f(4) are local minima, and f(2) a local maximum, of f(x). Also, f''(x) changes from positive to negative at $2 - \frac{2\sqrt{3}}{3}$ and from negative to positive at $2 + \frac{2\sqrt{3}}{3}$. Therefore there are points of inflection at both $x = 2 \pm \frac{2\sqrt{3}}{3}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

Here is a graph of f(x) with transition points highlighted.

23. $y = x^7 - 14x^6$

SOLUTION Let $f(x) = x^7 - 14x^6$. Then $f'(x) = 7x^6 - 84x^5 = 7x^5 (x - 12)$ and $f''(x) = 42x^5 - 420x^4 = 42x^4 (x - 10)$. Critical points are at x = 0 and x = 12, and candidate inflection points are at x = 0 and x = 10. Sign analyses reveal that f'(x) changes from positive to negative at x = 0 and from negative to positive at x = 12. Therefore f(0) is a local maximum and f(12) is a local minimum. Also, f''(x) changes from negative to positive at x = 10. Therefore, there is a point of inflection at x = 10. Moreover,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty.$$

Here is a graph of f with transition points highlighted.

24. $y = x^6 - 9x^4$

SOLUTION Let $f(x) = x^6 - 9x^4$. Then $f'(x) = 6x^5 - 36x^3 = 6x^3(x^2 - 6)$ and $f''(x) = 30x^4 - 108x^2 = 6x^2(5x^2 - 18)$. This shows that f has critical points at x = 0 and $x = \pm \sqrt{6}$ and candidate inflection points at x = 0 and $x = \pm 3\sqrt{10}/5$. Sign analyses reveal that f'(x) changes from negative to positive at $x = -\sqrt{6}$, from positive to negative at x = 0 and from negative to positive at $x = \sqrt{6}$. The graph therefore has a local maximum at x = 0 and local minima at $x = \pm \sqrt{6}$. Further sign analyses show that f''(x) transitions from positive to negative at $x = -3\sqrt{10}/5$ and from negative to positive at $x = 3\sqrt{10}/5$. The graph therefore has points of inflection at $x = \pm 3\sqrt{10}/5$. Moreover,

$$\lim_{x \to +\infty} f(x) = \infty.$$

Here is a graph of f with transition points highlighted.

25. $y = x - 4\sqrt{x}$

SOLUTION Let $f(x) = x - 4\sqrt{x} = x - 4x^{1/2}$. Then $f'(x) = 1 - 2x^{-1/2}$. This shows that f has critical points at x = 0 (where the derivative does not exist) and at x = 4 (where the derivative is zero). Because f'(x) < 0 for 0 < x < 4 and f'(x) > 0 for x > 4, f (4) is a local minimum. Now $f''(x) = x^{-3/2} > 0$ for all x > 0, so the graph is always concave up. Moreover,

$$\lim_{x \to \infty} f(x) = \infty$$

Here is a graph of f with transition points highlighted.

26. $y = \sqrt{x} + \sqrt{16 - x}$

SOLUTION Let $f(x) = \sqrt{x} + \sqrt{16 - x} = x^{1/2} + (16 - x)^{1/2}$. Note that the domain of f is [0, 16]. Now, $f'(x) = \frac{1}{2}x^{-1/2} - \frac{1}{2}(16 - x)^{-1/2}$ and $f''(x) = -\frac{1}{4}x^{-3/2} - \frac{1}{4}(16 - x)^{-3/2}$. Thus, the critical points are x = 0, x = 8 and x = 16. Sign analysis reveals that f'(x) > 0 for 0 < x < 8 and f'(x) < 0 for 8 < x < 16, so f has a local maximum at x = 9. Further, f''(x) < 0 on (0, 16), so the graph is always concave down. Here is a graph of f with the transition point highlighted.

27. $y = x(8-x)^{1/3}$ SOLUTION Let $f(x) = x (8-x)^{1/3}$. Then

$$f'(x) = x \cdot \frac{1}{3} (8-x)^{-2/3} (-1) + (8-x)^{1/3} \cdot 1 = \frac{24-4x}{3(8-x)^{2/3}}$$

and similarly

$$f''(x) = \frac{4x - 48}{9(8 - x)^{5/3}}.$$

Critical points are at x = 8 and x = 6, and candidate inflection points are x = 8 and x = 12. Sign analyses reveal that f'(x) changes from positive to negative at x = 6 and f'(x) remains negative on either side of x = 8. Moreover, f''(x) changes from negative to positive at x = 8 and from positive to negative at x = 12. Therefore, f has a local maximum at x = 6 and inflection points at x = 8 and x = 12. Moreover,

$$\lim_{x \to +\infty} f(x) = -\infty.$$

Here is a graph of f with the transition points highlighted.

28. $y = (x^2 - 4x)^{1/3}$ SOLUTION Let $f(x) = (x^2 - 4x)^{1/3}$. Then

$$f'(x) = \frac{2}{3}(x-2)(x^2-4x)^{-2/3}$$

and

$$f''(x) = \frac{2}{3} \left((x^2 - 4x)^{-2/3} - \frac{4}{3} (x - 2)^2 (x^2 - 4x)^{-5/3} \right)$$
$$= \frac{2}{9} (x^2 - 4x)^{-5/3} \left(3(x^2 - 4x) - 4(x - 2)^2 \right) = -\frac{2}{9} (x^2 - 4x)^{-5/3} (x^2 - 4x + 16).$$

Critical points of f(x) are x = 2 (where the derivative is zero) an x = 0 and x = 4 (where the derivative does not exist); candidate points of inflection are x = 0 and x = 4. Sign analyses reveal that f''(x) < 0 for x < 0 and for x > 4, while f''(x) > 0 for 0 < x < 4. Therefore, the graph of f(x) has points of inflection at x = 0 and x = 4. Since $(x^2 - x)^{-2/3}$ is positive wherever it is defined, the sign of f'(x) depends solely on the sign of x - 2. Hence, f'(x) does not change sign at x = 0 or x = 4, and goes from negative to positive at x = 2. f(2) is, in that case, a local minimum. Moreover,

$$\lim_{x \to \pm \infty} f(x) = \infty.$$

x

Here is a graph of f(x) with the transition points indicated.

29. $y = xe^{-x^2}$ **SOLUTION** Let $f(x) = xe^{-x^2}$. Then

 $f'(x) = -2x^2e^{-x^2} + e^{-x^2} = (1 - 2x^2)e^{-x^2},$

and

$$f''(x) = (4x^3 - 2x)e^{-x^2} - 4xe^{-x^2} = 2x(2x^2 - 3)e^{-x^2}.$$

There are critical points at $x = \pm \frac{\sqrt{2}}{2}$, and x = 0 and $x = \pm \frac{\sqrt{3}}{2}$ are candidates for inflection points. Sign analysis shows that f'(x) changes from negative to positive at $x = -\frac{\sqrt{2}}{2}$ and from positive to negative at $x = \frac{\sqrt{2}}{2}$. Moreover, f''(x) changes from negative to positive at both $x = \pm \frac{\sqrt{3}}{2}$ and from positive to negative at x = 0. Therefore, f has a local minimum at $x = -\frac{\sqrt{2}}{2}$, a local maximum at $x = \frac{\sqrt{2}}{2}$ and inflection points at x = 0 and at $x = \pm \frac{\sqrt{3}}{2}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = 0,$$

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.

30. $y = (2x^2 - 1)e^{-x^2}$

SOLUTION Let $f(x) = (2x^2 - 1)e^{-x^2}$. Then

$$f'(x) = (2x - 4x^3)e^{-x^2} + 4xe^{-x^2} = 2x(3 - 2x^2)e^{-x^2},$$

and

$$f''(x) = (8x^4 - 12x^2)e^{-x^2} + (6 - 12x^2)e^{-x^2} = 2(4x^4 - 12x^2 + 3)e^{-x^2}$$

There are critical points at x = 0 and $x = \pm \frac{\sqrt{3}}{2}$, and

$$x = -\sqrt{\frac{3+\sqrt{6}}{2}}, \ x = -\sqrt{\frac{3-\sqrt{6}}{2}}, \ x = \sqrt{\frac{3-\sqrt{6}}{2}}, \ x = \sqrt{\frac{3+\sqrt{6}}{2}}$$

are candidates for inflection points. Sign analysis shows that f'(x) changes from positive to negative at $x = \pm \frac{\sqrt{3}}{2}$ and from negative to positive at x = 0. Moreover, f''(x) changes from positive to negative at $x = -\sqrt{\frac{3+\sqrt{6}}{2}}$ and at $x = \sqrt{\frac{3-\sqrt{6}}{2}}$ and from negative to positive at $x = -\sqrt{\frac{3-\sqrt{6}}{2}}$ and at $x = \sqrt{\frac{3+\sqrt{6}}{2}}$. Therefore, f has local maxima at $x = \pm \frac{\sqrt{3}}{2}$, a local minimum at x = 0 and points of inflection at $x = \pm \sqrt{\frac{3\pm\sqrt{6}}{2}}$. Moreover,

$$\lim_{x \to \pm \infty} f(x) = 0,$$

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.

31. $y = x - 2 \ln x$

SOLUTION Let $f(x) = x - 2 \ln x$. Note that the domain of f is x > 0. Now,

$$f'(x) = 1 - \frac{2}{x}$$
 and $f''(x) = \frac{2}{x^2}$.

The only critical point is x = 2. Sign analysis shows that f'(x) changes from negative to positive at x = 2, so f(2) is a local minimum. Further, f''(x) > 0 for x > 0, so the graph is always concave up. Moreover,

$$\lim_{x \to \infty} f(x) = \infty.$$

Here is a graph of f with the transition points highlighted.

32. $y = x(4 - x) - 3 \ln x$

SOLUTION Let $f(x) = x(4-x) - 3 \ln x$. Note that the domain of f is x > 0. Now,

$$f'(x) = 4 - 2x - \frac{3}{x}$$
 and $f''(x) = -2 + \frac{3}{x^2}$

Because f'(x) < 0 for all x > 0, the graph is always decreasing. On the other hand, f''(x) changes from positive to negative at $x = \sqrt{\frac{3}{2}}$, so there is a point of inflection at $x = \sqrt{\frac{3}{2}}$. Moreover,

$$\lim_{x \to 0+} f(x) = \infty \quad \text{and} \quad \lim_{x \to infty} f(x) = -\infty,$$

so f has a vertical asymptote at x = 0. Here is a graph of f with the transition points highlighted.

33. $y = x - x^2 \ln x$

SOLUTION Let $f(x) = x - x^2 \ln x$. Then $f'(x) = 1 - x - 2x \ln x$ and $f''(x) = -3 - 2 \ln x$. There is a critical point at x = 1, and $x = e^{-3/2} \approx 0.223$ is a candidate inflection point. Sign analysis shows that f'(x) changes from positive to negative at x = 1 and that f''(x) changes from positive to negative at $x = e^{-3/2}$. Therefore, f has a local maximum at x = 1 and a point of inflection at $x = e^{-3/2}$. Moreover,

$$\lim_{x \to \infty} f(x) = -\infty.$$

Here is a graph of f with the transition points highlighted.

34. $y = x - 2\ln(x^2 + 1)$ SOLUTION Let $f(x) = x - 2\ln(x^2 + 1)$. Then $f'(x) = 1 - \frac{4x}{x^2 + 1}$, and $f''(x) = -\frac{(x^2+1)(4) - (4x)(2x)}{(x^2+1)^2} = \frac{4(x^2-1)}{(x^2+1)^2}.$

There are critical points at $x = 2 \pm \sqrt{3}$, and $x = \pm 1$ are candidates for inflection points. Sign analysis shows that f'(x) changes from positive to negative at $x = 2 - \sqrt{3}$ and from negative to positive at $x = 2 + \sqrt{3}$. Moreover, f''(x) changes from positive to negative at x = -1 and from negative to positive at x = 1. Therefore, f has a local maximum at $x = 2 - \sqrt{3}$, a local minimum at $x = 2 + \sqrt{3}$ and points of inflection at $x = \pm 1$. Finally,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty$$

Here is a graph of f with the transition points highlighted.

35. Sketch the graph of $f(x) = 18(x-3)(x-1)^{2/3}$ using the formulas

$$f'(x) = \frac{30\left(x - \frac{9}{5}\right)}{(x - 1)^{1/3}}, \qquad f''(x) = \frac{20\left(x - \frac{3}{5}\right)}{(x - 1)^{4/3}}$$

SOLUTION

$$f'(x) = \frac{30(x - \frac{9}{5})}{(x - 1)^{1/3}}$$

yields critical points at $x = \frac{9}{5}$, x = 1.

$$f''(x) = \frac{20(x - \frac{3}{5})}{(x - 1)^{4/3}}$$

yields potential inflection points at $x = \frac{3}{5}$, x = 1.

Interval	signs of f' and f''
$\left(-\infty,\frac{3}{5}\right)$	+-
$(\frac{3}{5}, 1)$	++
$(1, \frac{9}{5})$	-+
$(\frac{9}{5},\infty)$	++

The graph has an inflection point at $x = \frac{3}{5}$, a local maximum at x = 1 (at which the graph has a cusp), and a local minimum at $x = \frac{9}{5}$. The sketch looks something like this.

36. Sketch the graph of $f(x) = \frac{x}{x^2 + 1}$ using the formulas

$$f'(x) = \frac{1 - x^2}{(1 + x^2)^2}, \qquad f''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^3}$$

SOLUTION Let $f(x) = \frac{x}{x^2 + 1}$.

- Because $\lim_{x \to \pm \infty} f(x) = \frac{1}{1} \cdot \lim_{x \to \pm \infty} x^{-1} = 0$, y = 0 is a horizontal asymptote for f.
- Now $f'(x) = \frac{1-x^2}{(x^2+1)^2}$ is negative for x < -1 and x > 1, positive for -1 < x < 1, and 0 at $x = \pm 1$. Accordingly, f is decreasing for x < -1 and x > 1, is increasing for -1 < x < 1, has a local minimum value at x = -1 and a local maximum
- value at x = 1 and x > 1, is increasing for -1 < x < 1, has a local minimum value at x = -1 and a local maximum value at x = 1.
- Moreover,

$$f''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^3}.$$

Here is a sign chart for the second derivative, similar to those constructed in various exercises in Section 4.4. (The legend is on page 408.)

x	$\left(-\infty,-\sqrt{3}\right)$	$-\sqrt{3}$	$\left(-\sqrt{3},0\right)$	0	$\left(0,\sqrt{3}\right)$	$\sqrt{3}$	$\left(\sqrt{3},\infty\right)$
f''	-	0	+	0	—	0	+
f		Ι	\smile	Ι		Ι	\rightarrow

• Here is a graph of
$$f(x) = \frac{x}{x^2 + 1}$$

 $\Box R = 5$ In Exercises 37–40, sketch the graph of the function, indicating all transition points. If necessary, use a graphing utility or computer algebra system to locate the transition points numerically.

37. $y = x^2 - 10\ln(x^2 + 1)$

SOLUTION Let $f(x) = x^2 - 10 \ln(x^2 + 1)$. Then $f'(x) = 2x - \frac{20x}{x^2 + 1}$, and

$$f''(x) = 2 - \frac{(x^2 + 1)(20) - (20x)(2x)}{(x^2 + 1)^2} = \frac{x^4 + 12x^2 - 9}{(x^2 + 1)^2}.$$

There are critical points at x = 0 and $x = \pm 3$, and $x = \pm \sqrt{-6} + 3\sqrt{5}$ are candidates for inflection points. Sign analysis shows that f'(x) changes from negative to positive at $x = \pm 3$ and from positive to negative at x = 0. Moreover, f''(x) changes from positive to negative at $x = -\sqrt{-6} + 3\sqrt{5}$ and from negative to positive at $x = \sqrt{-6} + 3\sqrt{5}$. Therefore, f has a local maximum at x = 0, local minima at $x = \pm 3$ and points of inflection at $x = \pm \sqrt{-6} + 3\sqrt{5}$. Here is a graph of f with the transition points highlighted.

38. $y = e^{-x/2} \ln x$

SOLUTION Let $f(x) = e^{-x/2} \ln x$. Then

$$f'(x) = \frac{e^{-x/2}}{x} - \frac{1}{2}e^{-x/2}\ln x = e^{-x/2}\left(\frac{1}{x} - \frac{1}{2}\ln x\right)$$

and

$$f''(x) = e^{-x/2} \left(-\frac{1}{x^2} - \frac{1}{2x} \right) - \frac{1}{2} e^{-x/2} \left(\frac{1}{x} - \frac{1}{2} \ln x \right)$$
$$= e^{-x/2} \left(-\frac{1}{x^2} - \frac{1}{x} + \frac{1}{4} \ln x \right).$$

There is a critical point at x = 2.345751 and a candidate point of inflection at x = 3.792199. Sign analysis reveals that f'(x) changes from positive to negative at x = 2.345751 and that f''(x) changes from negative to positive at x = 3.792199. Therefore, f has a local maximum at x = 2.345751 and a point of inflection at x = 3.792199. Moreover,

$$\lim_{x \to 0+} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = 0.$$

Here is a graph of f with the transition points highlighted.

39. $y = x^4 - 4x^2 + x + 1$

SOLUTION Let $f(x) = x^4 - 4x^2 + x + 1$. Then $f'(x) = 4x^3 - 8x + 1$ and $f''(x) = 12x^2 - 8$. The critical points are x = -1.473, x = 0.126 and x = 1.347, while the candidates for points of inflection are $x = \pm \sqrt{\frac{2}{3}}$. Sign analysis reveals that f'(x) changes from negative to positive at x = -1.473, from positive to negative at x = 0.126 and from negative to positive at x = 1.347. For the second derivative, f''(x) changes from positive to negative at $x = -\sqrt{\frac{2}{3}}$ and from negative to positive at $x = \sqrt{\frac{2}{3}}$. Therefore, f has local minima at x = -1.473 and x = 1.347, a local maximum at x = 0.126 and points of inflection at $x = \pm \sqrt{\frac{2}{3}}$. Moreover,

$$\lim_{x \to +\infty} f(x) = \infty$$

Here is a graph of f with the transition points highlighted.

40. $y = 2\sqrt{x} - \sin x$, $0 \le x \le 2\pi$ SOLUTION Let $f(x) = 2\sqrt{x} - \sin x$. Then

$$f'(x) = \frac{1}{\sqrt{x}} - \cos x$$
 and $f''(x) = -\frac{1}{2}x^{-3/2} + \sin x$.

On $0 \le x \le 2\pi$, there is a critical point at x = 5.167866 and candidate points of inflection at x = 0.790841 and x = 3.047468. Sign analysis reveals that f'(x) changes from positive to negative at x = 5.167866, while f''(x) changes from negative to positive at x = 0.790841 and from positive to negative at x = 3.047468. Therefore, f has a local maximum at x = 5.167866 and points of inflection at x = 0.790841 and x = 3.047468. Here is a graph of f with the transition points highlighted.

In Exercises 41–46, sketch the graph over the given interval, with all transition points indicated.

41. $y = x + \sin x$, $[0, 2\pi]$

SOLUTION Let $f(x) = x + \sin x$. Setting $f'(x) = 1 + \cos x = 0$ yields $\cos x = -1$, so that $x = \pi$ is the lone critical point on the interval $[0, 2\pi]$. Setting $f''(x) = -\sin x = 0$ yields potential points of inflection at $x = 0, \pi, 2\pi$ on the interval $[0, 2\pi]$.

Interval	signs of f' and f''
$(0,\pi)$	+-
$(\pi, 2\pi)$	++

The graph has an inflection point at $x = \pi$, and no local maxima or minima. Here is a sketch of the graph of f(x):

42. $y = \sin x + \cos x$, $[0, 2\pi]$

SOLUTION Let $f(x) = \sin x + \cos x$. Setting $f'(x) = \cos x - \sin x = 0$ yields $\sin x = \cos x$, so that $\tan x = 1$, and $x = \frac{\pi}{4}, \frac{5\pi}{4}$. Setting $f''(x) = -\sin x - \cos x = 0$ yields $\sin x = -\cos x$, so that $-\tan x = 1$, and $x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$.

Interval	signs of f' and f''
$(0, \frac{\pi}{4})$	+-
$\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$	
$\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$	-+
$\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$	++
$(\frac{7\pi}{4}, 2\pi)$	+-

The graph has a local maximum at $x = \frac{\pi}{4}$, a local minimum at $x = \frac{5\pi}{4}$, and inflection points at $x = \frac{3\pi}{4}$ and $x = \frac{7\pi}{4}$. Here is a sketch of the graph of f(x):

43. $y = 2\sin x - \cos^2 x$, $[0, 2\pi]$

SOLUTION Let $f(x) = 2 \sin x - \cos^2 x$. Then $f'(x) = 2 \cos x - 2 \cos x (-\sin x) = \sin 2x + 2 \cos x$ and $f''(x) = 2 \cos 2x - 2 \sin x$. Setting f'(x) = 0 yields $\sin 2x = -2 \cos x$, so that $2 \sin x \cos x = -2 \cos x$. This implies $\cos x = 0$ or $\sin x = -1$, so that $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$. Setting f''(x) = 0 yields $2 \cos 2x = 2 \sin x$, so that $2 \sin(\frac{\pi}{2} - 2x) = 2 \sin x$, or $\frac{\pi}{2} - 2x = x \pm 2n\pi$. This yields $3x = \frac{\pi}{2} + 2n\pi$, or $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{9\pi}{6} = \frac{3\pi}{2}$.

Interval	signs of f' and f''
$\left(0, \frac{\pi}{6}\right)$	++
$\left(\frac{\pi}{6},\frac{\pi}{2}\right)$	+-
$\left(\frac{\pi}{2}, \frac{5\pi}{6}\right)$	
$\left(\frac{5\pi}{6},\frac{3\pi}{2}\right)$	-+
$\left(\frac{3\pi}{2}, 2\pi\right)$	++

The graph has a local maximum at $x = \frac{\pi}{2}$, a local minimum at $x = \frac{3\pi}{2}$, and inflection points at $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$. Here is a graph of *f* without transition points highlighted.

44. $y = \sin x + \frac{1}{2}x$, $[0, 2\pi]$

SOLUTION Let $f(x) = \sin x + \frac{1}{2}x$. Setting $f'(x) = \cos x + \frac{1}{2} = 0$ yields $x = \frac{2\pi}{3}$ or $\frac{4\pi}{3}$. Setting $f''(x) = -\sin x = 0$ yields potential points of inflection at $x = 0, \pi, 2\pi$.

Interval	signs of f' and f''
$\left(0, \frac{2\pi}{3}\right)$	+-
$\left(\frac{2\pi}{3},\pi\right)$	
$\left(\pi, \frac{4\pi}{3}\right)$	-+
$\left(\frac{4\pi}{3}, 2\pi\right)$	++

The graph has a local maximum at $x = \frac{2\pi}{3}$, a local minimum at $x = \frac{4\pi}{3}$, and an inflection point at $x = \pi$. Here is a graph of f without transition points highlighted.

45. $y = \sin x + \sqrt{3} \cos x$, $[0, \pi]$

SOLUTION Let $f(x) = \sin x + \sqrt{3} \cos x$. Setting $f'(x) = \cos x - \sqrt{3} \sin x = 0$ yields $\tan x = \frac{1}{\sqrt{3}}$. In the interval $[0, \pi]$, the solution is $x = \frac{\pi}{6}$. Setting $f''(x) = -\sin x - \sqrt{3} \cos x = 0$ yields $\tan x = -\sqrt{3}$. In the interval $[0, \pi]$, the lone solution is $x = \frac{2\pi}{3}$.

Interval	signs of f' and f''		
$(0, \pi/6)$	+-		
$(\pi/6, 2\pi/3)$			
$(2\pi/3,\pi)$	-+		

The graph has a local maximum at $x = \frac{\pi}{6}$ and a point of inflection at $x = \frac{2\pi}{3}$. A plot without the transition points highlighted is given below:

46. $y = \sin x - \frac{1}{2} \sin 2x$, $[0, \pi]$

SOLUTION Let $f(x) = \sin x - \frac{1}{2} \sin 2x$. Setting $f'(x) = \cos x - \cos 2x = 0$ yields $\cos 2x = \cos x$. Using the double angle formula for cosine, this gives $2\cos^2 x - 1 = \cos x$ or $(2\cos x + 1)(\cos x - 1) = 0$. Solving for $x \in [0, \pi]$, we find x = 0 or $\frac{2\pi}{3}$. Setting $f''(x) = -\sin x + 2\sin 2x = 0$ yields $4\sin x \cos x = \sin x$, so $\sin x = 0$ or $\cos x = \frac{1}{4}$. Hence, there are potential points of inflation at x = 0, $x = \pi$ and $x = \cos^{-1} \frac{1}{2} + 21812$.

points of inflection at $x = 0$, $x = \pi$ and $x = \cos^{-1}$	$1\frac{1}{4}$	\approx	1.31812.	
---	----------------	-----------	----------	--

Interval	Sign of f' and f''
$\left(0,\cos^{-1}\frac{1}{4}\right)$	++
$\left(\cos^{-1}\frac{1}{4},\frac{2\pi}{3}\right)$	+-
$\left(\frac{2\pi}{3},\pi\right)$	

The graph of f(x) has a local maximum at $x = \frac{2\pi}{3}$ and a point of inflection at $x = \cos^{-1} \frac{1}{4}$.

47. Are all sign transitions possible? Explain with a sketch why the transitions $++ \rightarrow -+$ and $-- \rightarrow +-$ do not occur if the function is differentiable. (See Exercise 76 for a proof.)

SOLUTION In both cases, there is a point where f is not differentiable at the transition from increasing to decreasing or decreasing to increasing.

48. Suppose that f is twice differentiable satisfying (i) f(0) = 1, (ii) f'(x) > 0 for all $x \neq 0$, and (iii) f''(x) < 0 for x < 0 and f''(x) > 0 for x > 0. Let $g(x) = f(x^2)$.

- (a) Sketch a possible graph of f(x).
- (b) Prove that g(x) has no points of inflection and a unique local extreme value at x = 0. Sketch a possible graph of g(x).

SOLUTION

(a) To produce a possible sketch, we give the direction and concavity of the graph over every interval.

Interval	$(-\infty, 0)$	$(0,\infty)$
Direction	7	7
Concavity	~	\sim

A sketch of one possible such function appears here:

(b) Let $g(x) = f(x^2)$. Then $g'(x) = 2xf'(x^2)$. If g'(x) = 0, either x = 0 or $f'(x^2) = 0$, which implies that x = 0 as well. Since $f'(x^2) > 0$ for all $x \neq 0$, g'(x) < 0 for x < 0 and g'(x) > 0 for x > 0. This gives g(x) a unique local extreme value at x = 0, a minimum. $g''(x) = 2f'(x^2) + 4x^2 f''(x^2)$. For all $x \neq 0$, $x^2 > 0$, and so $f''(x^2) > 0$ and $f'(x^2) > 0$. Thus g''(x) > 0, and so g''(x) does not change sign, and can have no inflection points. A sketch of g(x) based on the sketch we made for f(x) follows: indeed, this sketch shows a unique local minimum at x = 0.

49. Which of the graphs in Figure 3 *cannot* be the graph of a polynomial? Explain.

SOLUTION Polynomials are everywhere differentiable. Accordingly, graph (B) cannot be the graph of a polynomial, since the function in (B) has a cusp (sharp corner), signifying nondifferentiability at that point.

50. Which curve in Figure 4 is the graph of $f(x) = \frac{2x^4 - 1}{1 + x^4}$? Explain on the basis of horizontal asymptotes.

SOLUTION Since

$$\lim_{x \to \pm \infty} \frac{2x^4 - 1}{1 + x^4} = \frac{2}{1} \cdot \lim_{x \to \pm \infty} 1 = 2$$

the graph has left and right horizontal asymptotes at y = 2, so the left curve is the graph of $f(x) = \frac{2x^4 - 1}{1 + x^4}$.

51. Match the graphs in Figure 5 with the two functions $y = \frac{3x}{x^2 - 1}$ and $y = \frac{3x^2}{x^2 - 1}$. Explain.

SOLUTION Since $\lim_{x \to \pm \infty} \frac{3x^2}{x^2 - 1} = \frac{3}{1} \cdot \lim_{x \to \pm \infty} 1 = 3$, the graph of $y = \frac{3x^2}{x^2 - 1}$ has a horizontal asymptote of y = 3; hence, the right curve is the graph of $f(x) = \frac{3x^2}{x^2 - 1}$. Since

$$\lim_{x \to \pm \infty} \frac{3x}{x^2 - 1} = \frac{3}{1} \cdot \lim_{x \to \pm \infty} x^{-1} = 0,$$

the graph of $y = \frac{3x}{x^2 - 1}$ has a horizontal asymptote of y = 0; hence, the left curve is the graph of $f(x) = \frac{3x}{x^2 - 1}$. 52. Match the functions with their graphs in Figure 6.

SOLUTION

(a) The graph of $\frac{1}{x^2-1}$ should have a horizontal asymptote at y = 0 and vertical asymptotes at $x = \pm 1$. Further, the graph should consist of positive values for |x| > 1 and negative values for |x| < 1. Hence, the graph of $\frac{1}{x^2-1}$ is (D).

(b) The graph of $\frac{x^2}{x^2+1}$ should have a horizontal asymptote at y = 1 and no vertical asymptotes. Hence, the graph of $\frac{x^2}{x^2+1}$ is (A). (c) The graph of $\frac{1}{x^2+1}$ should have a horizontal asymptote at y = 0 and no vertical asymptotes. Hence, the graph of $\frac{1}{x^2+1}$ is (B). (d) The graph of $\frac{x}{x^2-1}$ should have a horizontal asymptote at y = 0 and vertical asymptotes at $x = \pm 1$. Further, the graph should consist of positive values for -1 < x < 0 and x > 1 and negative values for x < 1 and 0 < x < 1. Hence, the graph of $\frac{x}{x^2-1}$ is (C).

In Exercises 53–70, sketch the graph of the function. Indicate the transition points and asymptotes.

53.
$$y = \frac{1}{3x - 1}$$

SOLUTION Let $f(x) = \frac{1}{3x-1}$. Then $f'(x) = \frac{-3}{(3x-1)^2}$, so that f is decreasing for all $x \neq \frac{1}{3}$. Moreover, $f''(x) = \frac{18}{(3x-1)^3}$, so that f is concave up for $x > \frac{1}{3}$ and concave down for $x < \frac{1}{3}$. Because $\lim_{x \to \pm \infty} \frac{1}{3x-1} = 0$, f has a horizontal asymptote at y = 0. Finally, f has a vertical asymptote at $x = \frac{1}{3}$ with

54. $y = \frac{x-2}{x-3}$

SOLUTION Let $f(x) = \frac{x-2}{x-3}$. Then $f'(x) = \frac{-1}{(x-3)^2}$, so that f is decreasing for all $x \neq 3$. Moreover, $f''(x) = \frac{2}{(x-3)^3}$, so that f is concave up for x > 3 and concave down for x < 3. Because $\lim_{x \to \pm \infty} \frac{x-2}{x-3} = 1$, f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 3 with

$$\lim_{x \to 3^{-}} \frac{x-2}{x-3} = -\infty \quad \text{and} \quad \lim_{x \to 3^{+}} \frac{x-2}{x-3} = \infty.$$

55. $y = \frac{x+3}{x-2}$

SOLUTION Let $f(x) = \frac{x+3}{x-2}$. Then $f'(x) = \frac{-5}{(x-2)^2}$, so that f is decreasing for all $x \neq 2$. Moreover, $f''(x) = \frac{10}{(x-2)^3}$, so that f is concave up for x > 2 and concave down for x < 2. Because $\lim_{x \to \pm \infty} \frac{x+3}{x-2} = 1$, f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 2 with

$$\lim_{x \to 2^{-}} \frac{x+3}{x-2} = -\infty \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{x+3}{x-2} = \infty$$

56.
$$y = x + \frac{1}{x}$$

SOLUTION Let $f(x) = x + x^{-1}$. Then $f'(x) = 1 - x^{-2}$, so that f is increasing for x < -1 and x > 1 and decreasing for -1 < x < 0 and 0 < x < 1. Moreover, $f''(x) = 2x^{-3}$, so that f is concave up for x > 0 and concave down for x < 0. f has no horizontal asymptote and has a vertical asymptote at x = 0 with

$$\lim_{x \to 0^{-}} (x + x^{-1}) = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} (x + x^{-1}) = \infty$$

57. $y = \frac{1}{x} + \frac{1}{x-1}$

SOLUTION Let $f(x) = \frac{1}{x} + \frac{1}{x-1}$. Then $f'(x) = -\frac{2x^2 - 2x + 1}{x^2 (x-1)^2}$, so that f is decreasing for all $x \neq 0, 1$. Moreover, $f''(x) = \frac{2(2x^3 - 3x^2 + 3x - 1)}{x^3 (x-1)^3}$, so that f is concave up for $0 < x < \frac{1}{2}$ and x > 1 and concave down for x < 0 and $\frac{1}{2} < x < 1$. Because $\lim_{x \to \pm \infty} \left(\frac{1}{x} + \frac{1}{x-1}\right) = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 1 with

$$\lim_{x \to 0^{-}} \left(\frac{1}{x} + \frac{1}{x - 1} \right) = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} \left(\frac{1}{x} + \frac{1}{x - 1} \right) = \infty$$

and

$$\lim_{x \to 1-} \left(\frac{1}{x} + \frac{1}{x-1} \right) = -\infty \quad \text{and} \quad \lim_{x \to 1+} \left(\frac{1}{x} + \frac{1}{x-1} \right) = \infty.$$

58. $y = \frac{1}{r} - \frac{1}{r-1}$

SOLUTION Let $f(x) = \frac{1}{x} - \frac{1}{x-1}$. Then $f'(x) = \frac{2x-1}{x^2(x-1)^2}$, so that f is decreasing for x < 0 and $0 < x < \frac{1}{2}$ and increasing for $\frac{1}{2} < x < 1$ and x > 1. Moreover, $f''(x) = -\frac{2(3x^2 - 3x + 1)}{x^3(x-1)^3}$, so that f is concave up for 0 < x < 1 and concave down for x < 0 and x > 1. Because $\lim_{x \to \pm \infty} \left(\frac{1}{x} - \frac{1}{x-1}\right) = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 1 with

$$\lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{x - 1} \right) = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} \left(\frac{1}{x} - \frac{1}{x - 1} \right) = \infty$$

and

$$\lim_{x \to 1-} \left(\frac{1}{x} - \frac{1}{x-1}\right) = \infty \quad \text{and} \quad \lim_{x \to 1+} \left(\frac{1}{x} - \frac{1}{x-1}\right) = -\infty.$$

59.
$$y = \frac{1}{x(x-2)}$$

SOLUTION Let $f(x) = \frac{1}{x(x-2)}$. Then $f'(x) = \frac{2(1-x)}{x^2(x-2)^2}$, so that f is increasing for x < 0 and 0 < x < 1 and decreasing for 1 < x < 2 and x > 2. Moreover, $f''(x) = \frac{2(3x^2 - 6x + 4)}{x^3(x-2)^3}$, so that f is concave up for x < 0 and x > 2 and concave down for 0 < x < 2. Because $\lim_{x \to \pm \infty} \left(\frac{1}{x(x-2)}\right) = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 2 with

$$\lim_{x \to 0^-} \left(\frac{1}{x(x-2)} \right) = +\infty \quad \text{and} \quad \lim_{x \to 0^+} \left(\frac{1}{x(x-2)} \right) = -\infty$$

and

$$\lim_{x \to 2^{-}} \left(\frac{1}{x(x-2)} \right) = -\infty \quad \text{and} \quad \lim_{x \to 2^{+}} \left(\frac{1}{x(x-2)} \right) = \infty.$$

60. $y = \frac{x}{x^2 - 9}$

SOLUTION Let $f(x) = \frac{x}{x^2 - 9}$. Then $f'(x) = -\frac{x^2 + 9}{(x^2 - 9)^2}$, so that f is decreasing for all $x \neq \pm 3$. Moreover, $f''(x) = \frac{6x(x^2 + 6)}{(x^2 - 9)^3}$, so that f is concave down for x < -3 and for 0 < x < 3 and is concave up for -3 < x < 0 and for x > 3. Because $\lim_{x \to \pm \infty} \frac{x}{x^2 - 9} = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at $x = \pm 3$, with

$$\lim_{x \to -3-} \left(\frac{x}{x^2 - 9}\right) = -\infty \quad \text{and} \quad \lim_{x \to -3+} \left(\frac{x}{x^2 - 9}\right) = \infty$$

and

$$\lim_{x \to 3^{-}} \left(\frac{x}{x^2 - 9} \right) = -\infty \quad \text{and} \quad \lim_{x \to 3^{+}} \left(\frac{x}{x^2 - 9} \right) = \infty.$$

61. $y = \frac{1}{x^2 - 6x + 8}$ SOLUTION Let $f(x) = \frac{1}{x^2 - 6x + 8} = \frac{1}{(x - 2)(x - 4)}$. Then $f'(x) = \frac{6 - 2x}{(x^2 - 6x + 8)^2}$, so that f is increasing for x < 2and for 2 < x < 3, is decreasing for 3 < x < 4 and for x > 4, and has a local maximum at x = 3. Moreover, $f''(x) = \frac{2(3x^2 - 18x + 28)}{(x^2 - 6x + 8)^3}$, so that f is concave up for x < 2 and for x > 4 and is concave down for 2 < x < 4. Be-

cause $\lim_{x \to \pm \infty} \frac{1}{x^2 - 6x + 8} = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 2 and x = 4, with

$$\lim_{x \to 2^{-}} \left(\frac{1}{x^2 - 6x + 8} \right) = \infty \quad \text{and} \quad \lim_{x \to 2^{+}} \left(\frac{1}{x^2 - 6x + 8} \right) = -\infty$$

and

$$\lim_{x \to 4-} \left(\frac{1}{x^2 - 6x + 8} \right) = -\infty \quad \text{and} \quad \lim_{x \to 4+} \left(\frac{1}{x^2 - 6x + 8} \right) = \infty.$$

62.
$$y = \frac{x^3 + 1}{x}$$

SOLUTION Let $f(x) = \frac{x^3 + 1}{x} = x^2 + x^{-1}$. Then $f'(x) = 2x - x^{-2}$, so that f is decreasing for x < 0 and for $0 < x < \sqrt[3]{1/2}$ and increasing for $x > \sqrt[3]{1/2}$. Moreover, $f''(x) = 2 + 2x^{-3}$, so f is concave up for x < -1 and for x > 0 and concave down for -1 < x < 0. Because

$$\lim_{x \to \pm \infty} \frac{x^3 + 1}{x} = \infty,$$

f has no horizontal asymptotes. Finally, f has a vertical asymptote at x = 0 with

$$\lim_{x \to 0^{-}} \frac{x^3 + 1}{x} = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} \frac{x^3 + 1}{x} = \infty.$$

63. $y = 1 - \frac{3}{x} + \frac{4}{x^3}$

SOLUTION Let $f(x) = 1 - \frac{3}{x} + \frac{4}{x^3}$. Then

$$f'(x) = \frac{3}{x^2} - \frac{12}{x^4} = \frac{3(x-2)(x+2)}{x^4},$$

so that f is increasing for |x| > 2 and decreasing for -2 < x < 0 and for 0 < x < 2. Moreover,

$$f''(x) = -\frac{6}{x^3} + \frac{48}{x^5} = \frac{6(8-x^2)}{x^5},$$

so that f is concave down for $-2\sqrt{2} < x < 0$ and for $x > 2\sqrt{2}$, while f is concave up for $x < -2\sqrt{2}$ and for $0 < x < 2\sqrt{2}$. Because

$$\lim_{x \to \pm \infty} \left(1 - \frac{3}{x} + \frac{4}{x^3} \right) = 1,$$

f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 0 with

$$\lim_{x \to 0^{-}} \left(1 - \frac{3}{x} + \frac{4}{x^3} \right) = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} \left(1 - \frac{3}{x} + \frac{4}{x^3} \right) = \infty$$

64. $y = \frac{1}{x^2} + \frac{1}{(x-2)^2}$ SOLUTION Let $f(x) = \frac{1}{x^2} + \frac{1}{(x-2)^2}$. Then

$$f'(x) = -2x^{-3} - 2(x-2)^{-3} = -\frac{4(x-1)(x^2 - 2x + 4)}{x^3(x-2)^3},$$

so that f is increasing for x < 0 and for 1 < x < 2, is decreasing for 0 < x < 1 and for x > 2, and has a local minimum at x = 1. Moreover, $f''(x) = 6x^{-4} + 6(x-2)^{-4}$, so that f is concave up for all $x \neq 0, 2$. Because $\lim_{x \to \pm \infty} \left(\frac{1}{x^2} + \frac{1}{(x-2)^2}\right) = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 2 with

$$\lim_{x \to 0^{-}} \left(\frac{1}{x^2} + \frac{1}{(x-2)^2} \right) = \infty \quad \text{and} \quad \lim_{x \to 0^{+}} \left(\frac{1}{x^2} + \frac{1}{(x-2)^2} \right) = \infty$$

and

$$\lim_{x \to 2^{-}} \left(\frac{1}{x^2} + \frac{1}{(x-2)^2} \right) = \infty \quad \text{and} \quad \lim_{x \to 2^{+}} \left(\frac{1}{x^2} + \frac{1}{(x-2)^2} \right) = \infty$$

65. $y = \frac{1}{x^2} - \frac{1}{(x-2)^2}$

SOLUTION Let $f(x) = \frac{1}{x^2} - \frac{1}{(x-2)^2}$. Then $f'(x) = -2x^{-3} + 2(x-2)^{-3}$, so that f is increasing for x < 0 and for x > 2 and is decreasing for 0 < x < 2. Moreover,

$$f''(x) = 6x^{-4} - 6(x-2)^{-4} = -\frac{48(x-1)(x^2 - 2x + 2)}{x^4(x-2)^4},$$

so that f is concave up for x < 0 and for 0 < x < 1, is concave down for 1 < x < 2 and for x > 2, and has a point of inflection at x = 1. Because $\lim_{x \to \pm \infty} \left(\frac{1}{x^2} - \frac{1}{(x-2)^2} \right) = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and x = 2 with

$$\lim_{x \to 0^-} \left(\frac{1}{x^2} - \frac{1}{(x-2)^2} \right) = \infty \quad \text{and} \quad \lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{(x-2)^2} \right) = \infty$$

and

$$\lim_{x \to 2^{-}} \left(\frac{1}{x^2} - \frac{1}{(x-2)^2} \right) = -\infty \quad \text{and} \quad \lim_{x \to 2^{+}} \left(\frac{1}{x^2} - \frac{1}{(x-2)^2} \right) = -\infty.$$

66. $y = \frac{4}{x^2 - 9}$

SOLUTION Let $f(x) = \frac{4}{x^2 - 9}$. Then $f'(x) = -\frac{8x}{(x^2 - 9)^2}$, so that f is increasing for x < -3 and for -3 < x < 0, is

decreasing for 0 < x < 3 and for x > 3, and has a local maximum at x = 0. Moreover, $f''(x) = \frac{24(x^2 + 3)}{(x^2 - 9)^3}$, so that f is

concave up for x < -3 and for x > 3 and is concave down for -3 < x < 3. Because $\lim_{x \to \pm \infty} \frac{4}{x^2 - 9} = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = -3 and x = 3, with

$$\lim_{x \to -3-} \left(\frac{4}{x^2 - 9}\right) = \infty \quad \text{and} \quad \lim_{x \to -3+} \left(\frac{4}{x^2 - 9}\right) = -\infty$$

and

$$\lim_{x \to 3^{-}} \left(\frac{4}{x^2 - 9}\right) = -\infty \quad \text{and} \quad \lim_{x \to 3^{+}} \left(\frac{4}{x^2 - 9}\right) = \infty$$

67. $y = \frac{1}{(x^2 + 1)^2}$

SOLUTION Let $f(x) = \frac{1}{(x^2 + 1)^2}$. Then $f'(x) = \frac{-4x}{(x^2 + 1)^3}$, so that f is increasing for x < 0, is decreasing for x > 0 and has a local maximum at x = 0. Moreover,

$$f''(x) = \frac{-4(x^2+1)^3 + 4x \cdot 3(x^2+1)^2 \cdot 2x}{(x^2+1)^6} = \frac{20x^2 - 4}{(x^2+1)^4},$$

so that f is concave up for $|x| > 1/\sqrt{5}$, is concave down for $|x| < 1/\sqrt{5}$, and has points of inflection at $x = \pm 1/\sqrt{5}$. Because $\lim_{x \to \pm \infty} \frac{1}{(x^2 + 1)^2} = 0$, f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

 $f(x) = \frac{x^2}{(x^2 - 1)(x^2 + 1)}.$

Then

$$f'(x) = -\frac{2x(1+x^4)}{(x-1)^2(x+1)^2(x^2+1)^2},$$

so that f is increasing for x < -1 and for -1 < x < 0, is decreasing for 0 < x < 1 and for x > 1, and has a local maximum at x = 0. Moreover,

$$f''(x) = \frac{2 + 24x^4 + 6x^8}{(x-1)^3(x+1)^3(x^2+1)^3},$$

so that f is concave up for |x| > 1 and concave down for |x| < 1. Because $\lim_{x \to \pm \infty} \frac{x^2}{(x^2 - 1)(x^2 + 1)} = 0$, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = -1 and x = 1, with

$$\lim_{x \to -1-} \frac{x^2}{(x^2 - 1)(x^2 + 1)} = \infty \quad \text{and} \quad \lim_{x \to -1+} \frac{x^2}{(x^2 - 1)(x^2 + 1)} = -\infty$$

and

$$\lim_{x \to 1^{-}} \frac{x^2}{(x^2 - 1)(x^2 + 1)} = -\infty \quad \text{and} \quad \lim_{x \to 1^{+}} \frac{x^2}{(x^2 - 1)(x^2 + 1)} = \infty.$$

69. $y = \frac{1}{\sqrt{x^2 + 1}}$ SOLUTION Let $f(x) = \frac{1}{\sqrt{x^2 + 1}}$. Then

$$f'(x) = -\frac{x}{\sqrt{(x^2+1)^3}} = -x(x^2+1)^{-3/2},$$

so that f is increasing for x < 0 and decreasing for x > 0. Moreover,

$$f''(x) = -\frac{3}{2}x(x^2+1)^{-5/2}(-2x) - (x^2+1)^{-3/2} = (2x^2-1)(x^2+1)^{-5/2}$$

so that f is concave down for $|x| < \frac{\sqrt{2}}{2}$ and concave up for $|x| > \frac{\sqrt{2}}{2}$. Because

$$\lim_{x \to \pm \infty} \frac{1}{\sqrt{x^2 + 1}} = 0,$$

f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

70. $y = \frac{x}{\sqrt{x^2 + 1}}$ SOLUTION Let

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

Then

$$f'(x) = (x^2 + 1)^{-3/2}$$
 and $f''(x) = \frac{-3x}{(x^2 + 1)^{5/2}}$.

Thus, f is increasing for all x, is concave up for x < 0, is concave down for x > 0, and has a point of inflection at x = 0. Because

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = 1 \quad \text{and} \quad \lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} = -1,$$

f has horizontal asymptotes of y = -1 and y = 1. There are no vertical asymptotes.

Further Insights and Challenges

In Exercises 71–75, we explore functions whose graphs approach a nonhorizontal line as $x \to \infty$. A line y = ax + b is called a *slant asymptote* if

$$\lim_{x \to \infty} (f(x) - (ax + b)) = 0$$

01

$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$$

- 71. Let $f(x) = \frac{x^2}{x-1}$ (Figure 7). Verify the following:
- (a) f(0) is a local max and f(2) a local min.
- (b) f is concave down on $(-\infty, 1)$ and concave up on $(1, \infty)$.
- (c) $\lim_{x \to 1^{-}} f(x) = -\infty$ and $\lim_{x \to 1^{+}} f(x) = \infty$.
- (d) y = x + 1 is a slant asymptote of f(x) as $x \to \pm \infty$.
- (e) The slant asymptote lies above the graph of f(x) for x < 1 and below the graph for x > 1.

SOLUTION Let $f(x) = \frac{x^2}{x-1}$. Then $f'(x) = \frac{x(x-2)}{(x-1)^2}$ and $f''(x) = \frac{2}{(x-1)^3}$.

(a) Critical points of f'(x) occur at x = 0 and x = 2. x = 1 is not a critical point because it is not in the domain of f. Sign analyses reveal that x = 2 is a local minimum of f and x = 0 is a local maximum.

(b) Sign analysis of f''(x) reveals that f''(x) < 0 on $(-\infty, 1)$ and f''(x) > 0 on $(1, \infty)$.

(c)

$$\lim_{x \to 1^{-}} f(x) = -1 \lim_{x \to 1^{-}} \frac{1}{1 - x} = -\infty \quad \text{and} \quad \lim_{x \to 1^{+}} f(x) = 1 \lim_{x \to 1^{+}} \frac{1}{x - 1} = \infty.$$

(d) Note that using polynomial division, $f(x) = \frac{x^2}{x-1} = x + 1 + \frac{1}{x-1}$. Then $\lim_{x \to \pm \infty} (f(x) - (x+1)) = \lim_{x \to \pm \infty} x + 1 + \frac{1}{x-1} - (x+1) = \lim_{x \to \pm \infty} \frac{1}{x-1} = 0.$ (e) For x > 1, $f(x) - (x+1) = \frac{1}{x-1} > 0$, so f(x) approaches x + 1 from above. Similarly, for x < 1, $f(x) - (x+1) = \frac{1}{x-1} = 0$.

 $\frac{1}{x-1} < 0$, so f(x) approaches x + 1 from below. 72. If f(x) = P(x)/Q(x), where P and Q are polynomials of degrees m + 1 and m, then by long division, we can write

$$f(x) = (ax + b) + P_1(x)/Q(x)$$

where P_1 is a polynomial of degree < m. Show that y = ax + b is the slant asymptote of f(x). Use this procedure to find the slant asymptotes of the following functions:

(a)
$$y = \frac{x^2}{x+2}$$
 (b) $y = \frac{x^3 + x}{x^2 + x + 1}$

SOLUTION Since $\deg(P_1) < \deg(Q)$,

$$\lim_{x \to \pm \infty} \frac{P_1(x)}{Q(x)} = 0.$$

Thus

$$\lim_{x \to \pm \infty} (f(x) - (ax + b)) = 0$$

and y = ax + b is a slant asymptote of f.

- (a) $\frac{x^2}{x+2} = x 2 + \frac{4}{x+2}$; hence y = x 2 is a slant asymptote of $\frac{x^2}{x+2}$. (b) $\frac{x^3 + x}{x^2 + x + 1} = (x - 1) + \frac{x + 1}{x^2 - 1}$; hence, y = x - 1 is a slant asymptote of $\frac{x^3 + x}{x^2 + x + 1}$.
- (b) $\frac{1}{x^2 + x + 1} = (x 1) + \frac{1}{x^2 1}$, hence, y = x 1 is a stant asymptote of $\frac{1}{x^2 + x + 1}$. 73. Sketch the graph of

$$f(x) = \frac{x^2}{x+1}.$$

Proceed as in the previous exercise to find the slant asymptote.

SOLUTION Let $f(x) = \frac{x^2}{x+1}$. Then $f'(x) = \frac{x(x+2)}{(x+1)^2}$ and $f''(x) = \frac{2}{(x+1)^3}$. Thus, f is increasing for x < -2 and for x > 0, is decreasing for -2 < x < -1 and for -1 < x < 0, has a local minimum at x = 0, has a local maximum at x = -2, is concave down on $(-\infty, -1)$ and concave up on $(-1, \infty)$. Limit analyses give a vertical asymptote at x = -1, with

$$\lim_{x \to -1-} \frac{x^2}{x+1} = -\infty \quad \text{and} \quad \lim_{x \to -1+} \frac{x^2}{x+1} = \infty$$

By polynomial division, $f(x) = x - 1 + \frac{1}{x+1}$ and

$$\lim_{x \to \pm \infty} \left(x - 1 + \frac{1}{x+1} - (x-1) \right) = 0,$$

which implies that the slant asymptote is y = x - 1. Notice that f approaches the slant asymptote as in exercise 71.

74. Show that y = 3x is a slant asymptote for $f(x) = 3x + x^{-2}$. Determine whether f(x) approaches the slant asymptote from above or below and make a sketch of the graph.

SOLUTION Let $f(x) = 3x + x^{-2}$. Then

$$\lim_{x \to \pm \infty} (f(x) - 3x) = \lim_{x \to \pm \infty} (3x + x^{-2} - 3x) = \lim_{x \to \pm \infty} x^{-2} = 0$$

which implies that 3x is the slant asymptote of f(x). Since $f(x) - 3x = x^{-2} > 0$ as $x \to \pm \infty$, f(x) approaches the slant asymptote from above in both directions. Moreover, $f'(x) = 3 - 2x^{-3}$ and $f''(x) = 6x^{-4}$. Sign analyses reveal a local minimum at $x = \left(\frac{3}{2}\right)^{-1/3} \approx 0.87358$ and that f is concave up for all $x \neq 0$. Limit analyses give a vertical asymptote at x = 0.

75. Sketch the graph of $f(x) = \frac{1 - x^2}{2 - x}$.

SOLUTION Let $f(x) = \frac{1-x^2}{2-x}$. Using polynomial division, $f(x) = x + 2 + \frac{3}{x-2}$. Then

$$\lim_{x \to \pm \infty} (f(x) - (x+2)) = \lim_{x \to \pm \infty} \left((x+2) + \frac{3}{x-2} - (x+2) \right) = \lim_{x \to \pm \infty} \frac{3}{x-2} = \frac{3}{1} \cdot \lim_{x \to \pm \infty} x^{-1} = 0$$

which implies that y = x + 2 is the slant asymptote of f(x). Since $f(x) - (x + 2) = \frac{3}{x - 2} > 0$ for x > 2, f(x) approaches the slant asymptote from above for x > 2; similarly, $\frac{3}{x - 2} < 0$ for x < 2 so f(x) approaches the slant asymptote from below

for x < 2. Moreover, $f'(x) = \frac{x^2 - 4x + 1}{(2 - x)^2}$ and $f''(x) = \frac{-6}{(2 - x)^3}$. Sign analyses reveal a local minimum at $x = 2 + \sqrt{3}$, a local maximum at $x = 2 - \sqrt{3}$ and that f is concave down on $(-\infty, 2)$ and concave up on $(2, \infty)$. Limit analyses give a vertical asymptote at x = 2.

76. Assume that f'(x) and f''(x) exist for all x and let c be a critical point of f(x). Show that f(x) cannot make a transition from ++ to -+ at x = c. *Hint:* Apply the MVT to f'(x).

SOLUTION Let f(x) be a function such that f''(x) > 0 for all x and such that it transitions from ++ to -+ at a critical point c where f'(c) is defined. That is, f'(c) = 0, f'(x) > 0 for x < c and f'(x) < 0 for x > c. Let g(x) = f'(x). The previous statements indicate that g(c) = 0, $g(x_0) > 0$ for some $x_0 < c$, and $g(x_1) < 0$ for some $x_1 > c$. By the Mean Value Theorem,

$$\frac{g(x_1) - g(x_0)}{x_1 - x_0} = g'(c_0),$$

for some c_0 between x_0 and x_1 . Because $x_1 > c > x_0$ and $g(x_1) < 0 < g(x_0)$,

$$\frac{g(x_1) - g(x_0)}{x_1 - x_0} < 0$$

But, on the other hand $g'(c_0) = f''(c_0) > 0$, so there is a contradiction. This means that our assumption of the existence of such a function f(x) must be in error, so no function can transition from ++ to -+.

If we drop the requirement that f'(c) exist, such a function can be found. The following is a graph of $f(x) = -x^{2/3}$. f''(x) > 0 wherever f''(x) is defined, and f'(x) transitions from positive to negative at x = 0.

77. Assume that f''(x) exists and f''(x) > 0 for all x. Show that f(x) cannot be negative for all x. *Hint:* Show that $f'(b) \neq 0$ for some b and use the result of Exercise 64 in Section 4.4.

SOLUTION Let f(x) be a function such that f''(x) exists and f''(x) > 0 for all x. Since f''(x) > 0, there is at least one point x = b such that $f'(b) \neq 0$. If not, f'(x) = 0 for all x, so f''(x) = 0. By the result of Exercise 64 in Section 4.4, $f(x) \ge f(b) + f'(b)(x-b)$. Now, if f'(b) > 0, we find that f(b) + f'(b)(x-b) > 0 whenever

$$x > \frac{bf'(b) - f(b)}{f'(b)},$$

a condition that must be met for some x sufficiently large. For such x, f(x) > f(b) + f'(b)(x - b) > 0. On the other hand, if f'(b) < 0, we find that f(b) + f'(b)(x - b) > 0 whenever

$$x < \frac{bf'(b) - f(b)}{f'(b)}.$$

For such an x, f(x) > f(b) + f'(b)(x - b) > 0.