Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3 - x^2}}{\ln(x+1)}$$

Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3 - x^2}}{\ln(x+1)}$$

$$(-1,0)\cup\left(0,\sqrt{3}\right]$$

Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3-x^2}}{\ln(x+1)}$$

$$(-1,0)\cup\left(0,\sqrt{3}\right]$$

Where might you expect f(x) to have a vertical asymptote? What does the function look like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity at a. That is, $\lim_{x\to a^{\pm}} f(x) = \pm \infty$.)

Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3-x^2}}{\ln(x+1)}$$

$$(-1,0)\cup\left(0,\sqrt{3}\right]$$

Where might you expect f(x) to have a vertical asymptote? What does the function look like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity at a. That is, $\lim_{x\to a^{\pm}} f(x) = \pm \infty$.)

$$x \rightarrow a^{\pm}$$

Where is f(x) = 0?

Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3-x^2}}{\ln(x+1)}$$

$$(-1,0)\cup\left(0,\sqrt{3}
ight]$$

Where might you expect f(x) to have a vertical asymptote? What does the function look like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity

at a. That is,
$$\lim_{x \to a^{\pm}} f(x) = \pm \infty$$
.)

Where is f(x) = 0?

What happens to f(x) near its other endpoint, x = -1?

Example: Sketch 1

Review: find the domain of the following function.

$$f(x) = \frac{\sqrt{3-x^2}}{\ln(x+1)}$$

$$(-1,0)\cup\left(0,\sqrt{3}
ight]$$

Where might you expect f(x) to have a vertical asymptote? What does the function look like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity at a. That is, $\lim_{x\to a^{\pm}} f(x) = \pm \infty$.)

Where is f(x) = 0?

What happens to f(x) near its other endpoint, x = -1?

https://www.desmos.com/calculator/9funm5gwrt

Good things to check:

- Domain
- Vertical asymptotes: $\lim_{x \to a} f(x) = \pm \infty$
- Intercepts: x = 0, f(x) = 0
- Horizontal asymptotes and end behavior: $\lim_{x \to \pm \infty} f(x)$

Example: Sketch 2

What does the graph of the following function look like?

$$f(x) = \frac{x-2}{(x+3)^2}$$

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes

Example: Sketch 2

What does the graph of the following function look like?

$$f(x) = \frac{x-2}{(x+3)^2}$$

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes

https://www.desmos.com/calculator/hyzl5cyq7i

Example: Sketch 3

What does the graph of the following function look like?

$$f(x) = \frac{(x+2)(x-3)^2}{x(x-5)}$$

Example: Sketch 3

What does the graph of the following function look like?

$$f(x) = \frac{(x+2)(x-3)^2}{x(x-5)}$$

https://www.desmos.com/calculator/ploa0q7bxn

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

$$f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 - 15x^2$$

First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

$$f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 - 15x^2$$

- Domain: all real numbers
- •Intercepts: (0,0) jumps out; we can factor $f(x) = x^2(\frac{1}{2}x^2 \frac{4}{3}x 15)$ then use quadratic formula to find y-intercepts at $x=\frac{4\pm\sqrt{286}}{3}$, so $x\approx 7$ and $x\approx -4.3$.
- •As x goes to positive or negative infinity, function goes to infinity
- $\bullet f'(x) = 2x^3 4x^2 30x = 2x(x^2 2 15) = 2x(x 5)(x + 3)$ so critical points are x = 0, x = -3, and x = 5. No singular points.

https://www.desmos.com/calculator/lxdlgmhnsl

What does the following function look like?

$$f(x) = \frac{1}{3}x^3 + 2x^2 + 4x + 24$$

Example: Sketch 5

What does the following function look like?

$$f(x) = \frac{1}{3}x^3 + 2x^2 + 4x + 24$$

- •Domain: all real numbers. No VA. Goes to $\pm \infty$.
- $\bullet f(0) = 24$; $f(x) = \frac{1}{2}x^2(x+6) + 4(x+6) = (\frac{1}{2}x^2+4)(x+6)$, so only one root:

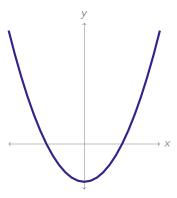
$$f(-6)=0.$$

- $\bullet f'(x) = x^2 + 4x4 = (x+2)^2$; only one critical point, at x = -2, and increasing everywhere else
- •So, at the left, comes from negative infinity; levels crosses x-axis at x = -6; levels out at x = -2; crosses y-axis at y = 24; carries on to infinity

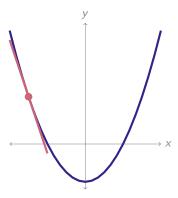
https://www.desmos.com/calculator/xum0mstmiv

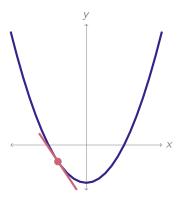
What does the graph of the following function look like?

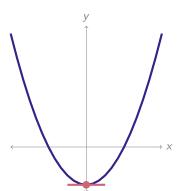
$$f(x)=e^{\frac{x+1}{x-1}}$$

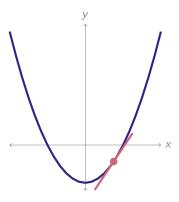

Example: Sketch 6

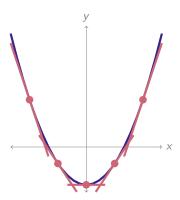
What does the graph of the following function look like?

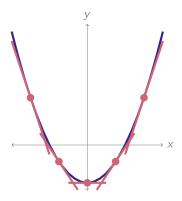

$$f(x) = e^{\frac{x+1}{x-1}}$$

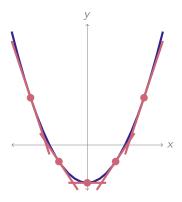

- •Domain: $x \neq 1$ •VA: something weird happens at x = 1. Check out limits:
- $\lim_{x \to 1^{-}} \frac{x+1}{x-1} = -\infty \text{ and } \lim_{x \to 1^{+}} \frac{x+1}{x-1} = \infty, \text{ so } \lim_{x \to 1^{-}} f(x) = \lim_{A \to -\infty} e^{A} = 0 \text{ while }$
- $\lim_{x \to 1^+} f(x) = \lim_{A \to \infty} e^A = \infty.$
- •Horizontal asymptotes: $\lim_{x \to +\infty} f(x) = e$
- •Intercepts: the function is never zero; $f(0) = \frac{1}{a}$.
- Derivative: $f'(x) = e^{\frac{x+1}{x-1}} \left(\frac{-2}{(x-1)^2} \right)$; so the function is always decreasing (when it's defined!)
- •So, on either end, it gets extremely close to e; as we move left to right, it dips to $\frac{1}{2}$ at the y-axis; gets nearly to the x-axis at 1; then has a VA from the right only at 1; then dips back to very close to e.

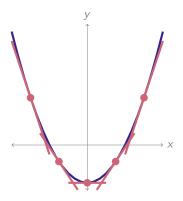

https://www.desmos.com/calculator/x0cccy1ggj



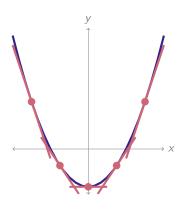


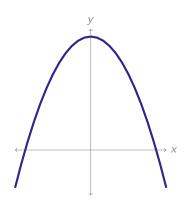




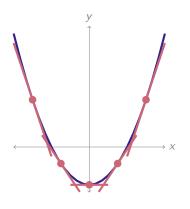


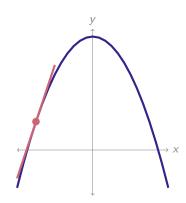
Slopes are increasing



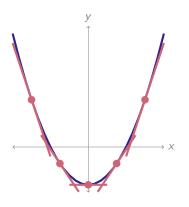

Slopes are increasing

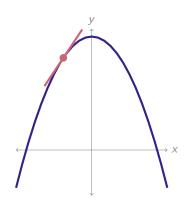
Slopes are increasing


$$f''(x) > 0$$

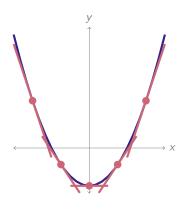


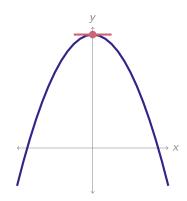
Slopes are increasing


$$f''(x) > 0$$

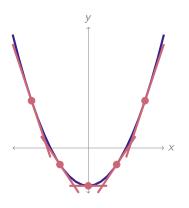


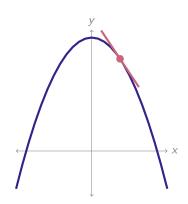
Slopes are increasing


$$f''(x) > 0$$

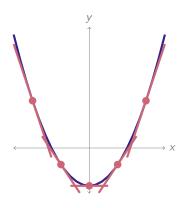


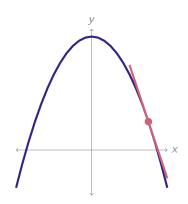
Slopes are increasing


$$f''(x) > 0$$

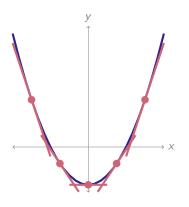


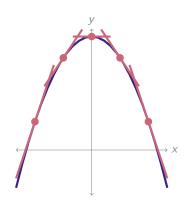
Slopes are increasing


$$f''(x) > 0$$

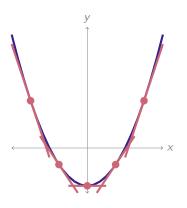


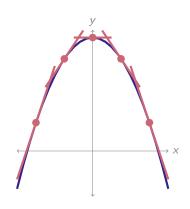
Slopes are increasing


$$f''(x) > 0$$

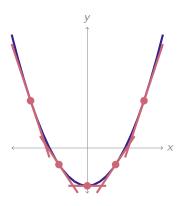


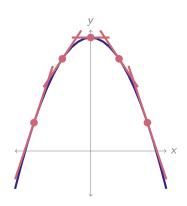
Slopes are increasing

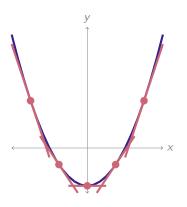

$$f''(x) > 0$$

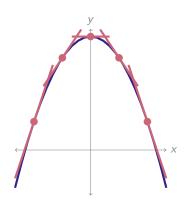


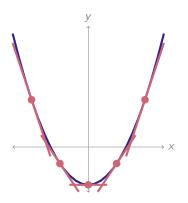
Slopes are increasing

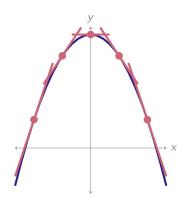

$$f''(x) > 0$$


Slopes are increasing f''(x) > 0"concave up"

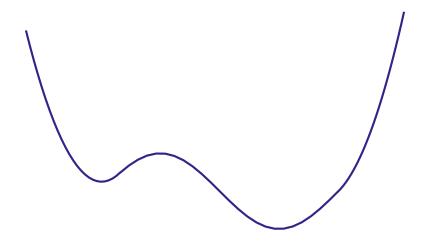

Slopes are decreasing

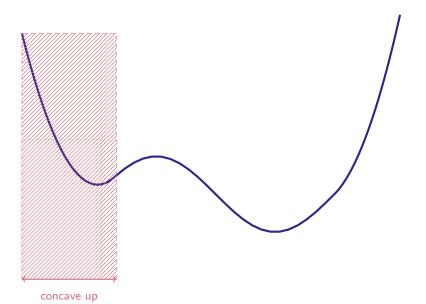

Slopes are increasing f''(x) > 0"concave up"

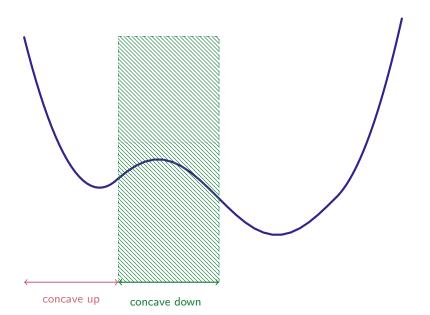

Slopes are decreasing f''(x) < 0

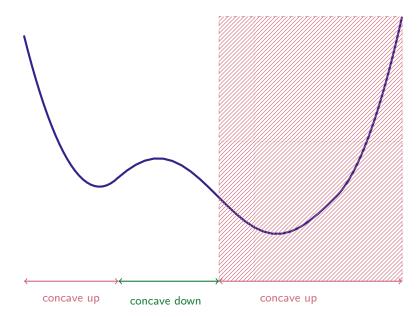

Slopes are increasing f''(x) > 0"concave up"

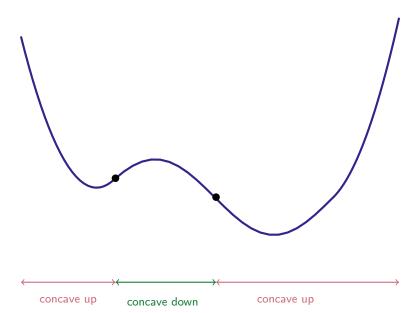
Slopes are decreasing f''(x) < 0"concave down"

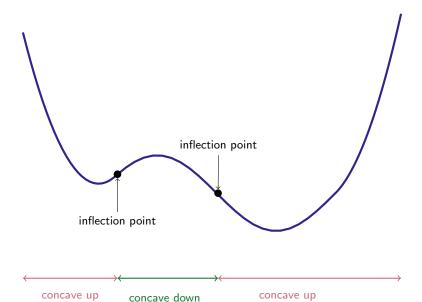

Slopes are increasing f''(x) > 0"concave up" tangent line below curve

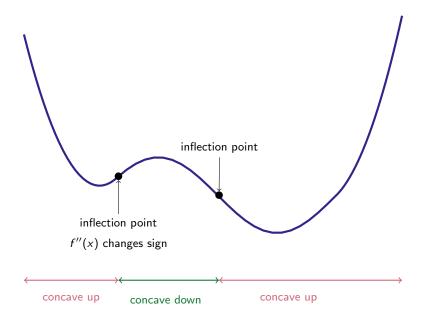



Slopes are decreasing f''(x) < 0"concave down" tangent line above curve


Mnemonic







Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Is it possible to be concave up and decreasing?

A. Yes

B. No

C. I'm not sure

Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Is it possible to be concave up and decreasing?

A. Yes

B. No

C. I'm not sure

Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Is it possible to be concave up and decreasing?

A Yes

B. No

C. I'm not sure

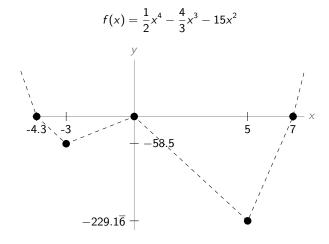
Suppose a function f(x) is defined for all real numbers, and is concave up on the interval [0, 1]. Which of the following must be true?

- A. f'(0) < f'(1)
- B. f'(0) > f'(1)
- C. f'(0) is positive
- D. f'(0) is negative
- F. I'm not sure

Describe the concavity of the function $f(x) = e^x$.

- A. concave up
- B. concave down
- C. concave up for x < 0; concave down for x > 0
- D. concave down for x < 0; concave up for x > 0
- E. I'm not sure

Is it possible to be concave up and decreasing?


A Yes

B. No

C. I'm not sure

Suppose a function f(x) is defined for all real numbers, and is concave up on the interval [0, 1]. Which of the following must be true?

- A. f'(0) < f'(1)
- B. f'(0) > f'(1)
- C. f'(0) is positive
- D. f'(0) is negative
- F. I'm not sure

$$f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 - 15x^2$$

$$-4.3 \cdot -3 \cdot -3 \cdot -58.5$$

$$f''(x) = 6x^2 - 8x - 30 = 2(x - 3)(3x + 5)$$

$$f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 - 15x^2$$

$$-4.3 \quad -3 \quad 5 \quad 7$$

$$-229.1\overline{6} +$$

$$f''(x) = 6x^2 - 8x - 30 = 2(x - 3)(3x + 5)$$

$$f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 - 15x^2$$

$$-4.3 - \frac{3}{3} - 5 - 58.5$$

$$f''(x) = 6x^2 - 8x - 30 = 2(x - 3)(3x + 5)$$

Example: Sketch 7

Sketch:

$$f(x) = x^5 - 15x^3$$

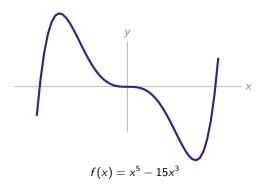
Sketch:

$$f(x) = x^5 - 15x^3$$

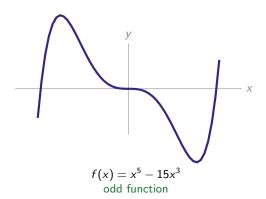
Symmetry!

Example: Sketch 7

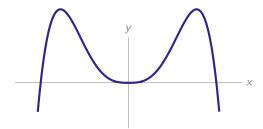
Sketch:

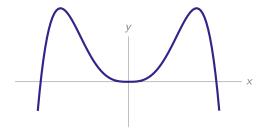

$$f(x) = x^5 - 15x^3$$

Symmetry!


- •Defined and differentiable for all real numbers.
- •Roots: x = 0, $x = \pm \sqrt{15} \approx 4$
- •Goes to $\pm \infty$ as x goes to $\pm \infty$
- •CP: x = 0, $x = \pm 3$. Increasing on $(-\infty, -3)$, decreasing (-3, 0) and (0, 3), decreasing $(3, \infty)$
- •So, local max at x = -3 and local min at x = 3
- f''(x) = 0 for x = 0 and $x = \pm \frac{3}{\sqrt{2}} \approx \pm 2$. All of these are inflection points; concave down $(-\infty, -\frac{3}{\sqrt{2}})$, concave up $(\frac{3}{\sqrt{2}}, 0)$, concave down $(0, \frac{3}{\sqrt{2}})$, and concave up $(\frac{3}{\sqrt{2}}, \infty)$.
- f(3) = -162, f(-3) = -162, $f(-3/\sqrt{2}) \approx 100$, $f(3/\sqrt{2}) \approx -100$

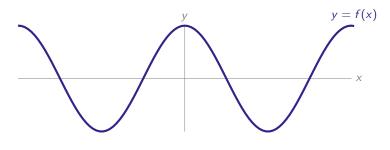
https://www.desmos.com/calculator/uoii6nmgr8


Even and Odd Functions



Even and Odd Functions

Even and Odd Functions

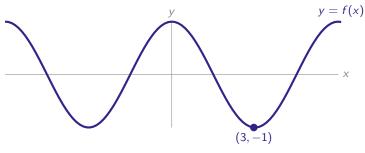


even function

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

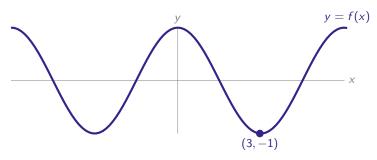


even function

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

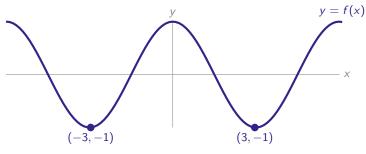

even function

Suppose f(3) = -1.

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

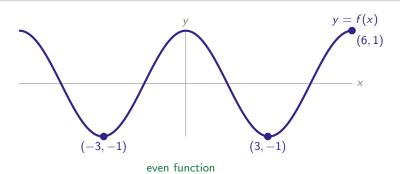

even function

Suppose
$$f(3) = -1$$
. Then $f(-3) =$

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$


even function

Suppose f(3) = -1. Then f(-3) = -1 also.

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

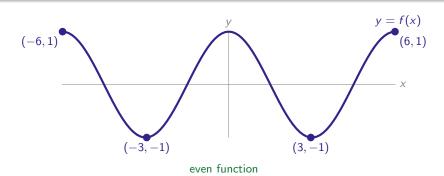
Suppose f(3) = -1. Then f(-3) = -1 also.

Suppose f(6) = 1.

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$



Suppose f(3) = -1. Then f(-3) = -1 also.

Suppose f(6) = 1. Then f(-6) =

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

Suppose f(3) = -1. Then f(-3) = -1 also.

Suppose f(6) = 1. Then f(-6) = 1 also.

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

Examples:

Even Function

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

Examples: $f(x) = x^2$

$$f(x) = x$$

A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

$$f(x) = x^2$$
$$f(x) = x^4$$

Even Function

A function f(x) is even if, for all x in its domain,

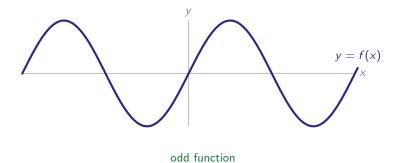
$$f(-x)=f(x)$$

$$f(x) = x^2$$
$$f(x) = x^4$$

$$f(x) = \cos(x)$$

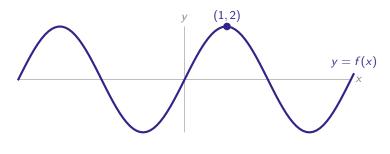
A function f(x) is even if, for all x in its domain,

$$f(-x)=f(x)$$

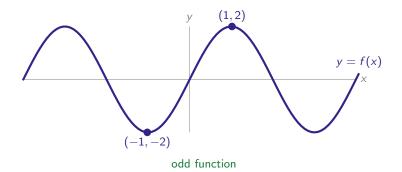

$$f(x) = x^2$$
$$f(x) = x^4$$


$$f(x) = x$$

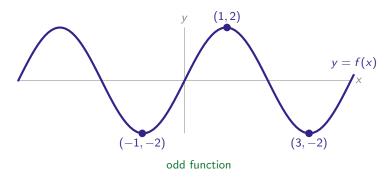
$$Y(x) = \cos(x)$$


$$f(x) = \cos(x)$$

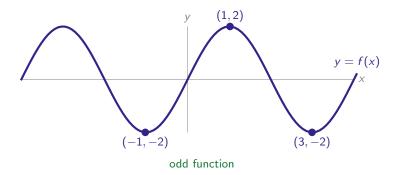
$$f(x) = \frac{x^4 + \cos(x)}{x^{16} + 7}$$

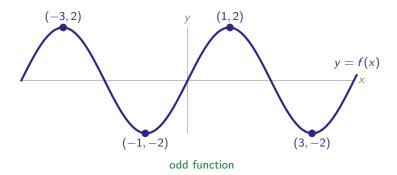


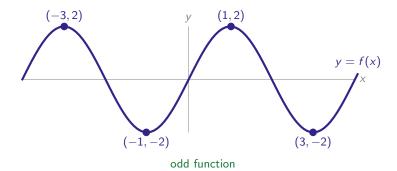
Suppose
$$f(1) = 2$$
.



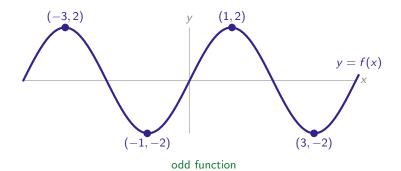
odd function


Suppose
$$f(1) = 2$$
. Then $f(-1) =$


Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$.


Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$. Suppose $f(3) = -2$.

Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$. Suppose $f(3) = -2$. Then $f(-3) = -2$.


Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$. Suppose $f(3) = -2$. Then $f(-3) = 2$.

Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$. Suppose $f(3) = -2$. Then $f(-3) = 2$.

Even Function

A function f(x) is odd if, for all x in its domain,

Suppose
$$f(1) = 2$$
. Then $f(-1) = -2$. Suppose $f(3) = -2$. Then $f(-3) = 2$.

Even Function

A function f(x) is odd if, for all x in its domain,

$$f(-x) = -f(x)$$

Even Function

A function f(x) is odd if, for all x in its domain,

$$f(-x)=-f(x)$$

Even Function

A function f(x) is odd if, for all x in its domain,

$$f(-x)=-f(x)$$

$$f(x) = x$$

Even Function

A function f(x) is odd if, for all x in its domain,

$$f(-x)=-f(x)$$

$$f(x) = x$$
$$f(x) = x^3$$

$$f(x) = x^3$$

A function f(x) is odd if, for all x in its domain,

$$f(-x)=-f(x)$$

$$f(x) = x$$

$$f(x) = x$$

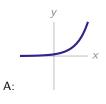
$$f(x) = x^3$$

$$f(x) = \sin(x)$$

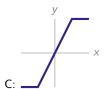
A function f(x) is odd if, for all x in its domain,

$$f(-x) = -f(x)$$

$$f(x) = x$$


$$f(x) = x$$

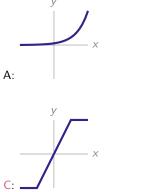
$$f(x) = x^3$$

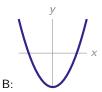

$$f(x) = \sin(x)$$

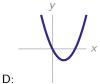
$$f(x) = \sin(x)$$

$$f(x) = \frac{x(1+x^2)}{x^2+5}$$

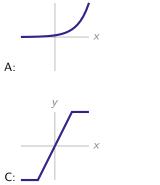
Pick out the odd function.

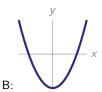


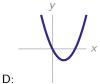


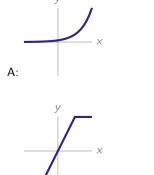


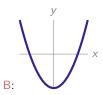
D:

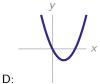

Pick out the odd function.






Pick out the even function.





Pick out the even function.

Even more Poll tiiiime

- A. f(0) = f(-0)
- B. f(0) = -f(0)
- C. f(0) = 0D. all of the above are true
- E. none of the above are necessarily true

Even more Poll tiiiime

- A. f(0) = f(-0)
- B. f(0) = -f(0)
- C. f(0) = 0
- D. all of the above are true
- E. none of the above are necessarily true

Even more Poll tiiiiime

- A. f(0) = f(-0) <— true but uninteresting, for all functions
- B. f(0) = -f(0)
- C. f(0) = 0
- D. all of the above are true
- E. none of the above are necessarily true

Even more Poll tiiiiime

Suppose f(x) is an odd function, continuous, defined for all real numbers. What is f(0)? Pick the best answer.

- A. f(0) = f(-0) <— true but uninteresting, for all functions
- B. f(0) = -f(0) <— only possible for f(0) = 0
- C. f(0) = 0
- D. all of the above are true

E. none of the above are necessarily true

Even more Poll tiiiiime

- A. f(0) = f(-0) <— true but uninteresting, for all functions
- B. f(0) = -f(0) <— only possible for f(0) = 0
- C. f(0) = 0 <— this is equivalent to the choice above
- D. all of the above are true
- E. none of the above are necessarily true

Even more and more Poll tiiiiime

- A. f(0) = f(-0)
- B. f(0) = -f(0)
- C. f(0) = 0D. all of the above are true
- E. none of the above are necessarily true

Even more and more Poll tiiiiime

- A. f(0) = f(-0)
- B. f(0) = -f(0)
- C. f(0) = 0D. all of the above are true
- E. none of the above are necessarily true

Suppose f(x) is an even function, differentiable for all real numbers. What can we say about f'(x)?

- A. f'(x) is also even
- B. f'(x) is odd C. f'(x) is constant
- D. all of the above are true
- E. none of the above are necessarily true

OK OK... last one

Suppose f(x) is an even function, differentiable for all real numbers. What can we say about f'(x)?

- A. f'(x) is also even
- B. f'(x) is odd
- C. f'(x) is constant
- D. all of the above are true
- E. none of the above are necessarily true

Periodicity

Periodic

A function is periodic with period P if

$$f(x) = f(x + P)$$

whenever x and x + P are in the domain of f, and P is the smallest such (positive) number

Examples: $\sin(x)$, $\cos(x)$ both have period 2π ; $\tan(x)$ has period π .

$$f(x) = \sin(\sin x)$$

 $(\mathsf{ignore}\ \mathsf{concavity})$

Example: Sketch 8

$$f(x) = \sin(\sin x)$$

(ignore concavity)

$$g(x) = \sin(2\pi\sin x)$$

Example: Sketch 10

$$f(x) = (x^2 - 64)^{1/3}$$

Example: Sketch 10

$$f(x) = (x^2 - 64)^{1/3}$$

$$f'(x) = \frac{2x}{3(x^2 - 64)^{2/3}};$$

$$f''(x) = \frac{-2(\frac{1}{3}x^2 + 64)}{3(x^2 - 64)^{5/3}}$$

Let's Graph

$$f(x) = \frac{x^2 + x}{(x+1)(x^2+1)^2}$$

$$f(x) = \frac{x^2 + x}{(x+1)(x^2+1)^2}$$

Note for
$$x \neq -1$$
, $f(x) = \frac{x(x+1)}{(x+1)(x^2+1)^2} = \frac{x}{(x^2+1)^2}$

Example: Sketch 11

$$f(x) = \frac{x^2 + x}{(x+1)(x^2+1)^2}$$

Note for $x \neq -1$, $f(x) = \frac{x(x+1)}{(x+1)(x^2+1)^2} = \frac{x}{(x^2+1)^2}$

$$g(x):=\frac{x}{(x^2+1)^2}$$

Let's Graph

Example: Sketch 11

$$f(x) = \frac{x^2 + x}{(x+1)(x^2+1)^2}$$

Note for
$$x \neq -1$$
, $f(x) = \frac{x(x+1)}{(x+1)(x^2+1)^2} = \frac{x}{(x^2+1)^2}$

$$g(x) := \frac{x}{(x^2+1)^2}$$

$$g'(x) = \frac{1 - 3x^2}{(x^2 + 1)^3}; \ g''(x) = \frac{12x(x^2 - 1)}{(x^2 + 1)^4}$$

Let's Graph

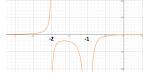
$$f(x) = x(x-1)^{2/3}$$

A.
$$f(x) = \frac{x-1}{(x+1)(x+2)}$$

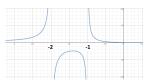
B. $f(x) = \frac{(x-1)^2}{(x+1)(x+2)}$
C. $f(x) = \frac{x-1}{(x+1)^2(x+2)}$
D. $f(x) = \frac{(x-1)^2}{(x+1)^2(x+2)}$

B.
$$f(x) = \frac{x}{(x+1)(x+2)}$$

C.
$$f(x) = \frac{1}{(x+1)^2(x+2)}$$


D.
$$f(x) = \frac{7}{(x+1)^2(x+2)^2}$$

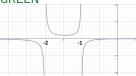
A.
$$f(x) = \frac{x-1}{(x+1)(x+2)}$$


B.
$$f(x) = \frac{(x-1)^2}{(x+1)(x+2)}$$

C.
$$f(x) = \frac{x-1}{(x+1)^2(x+2)}$$

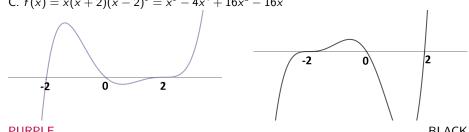
A.
$$f(x) = \frac{x-1}{(x+1)(x+2)}$$

B. $f(x) = \frac{(x-1)^2}{(x+1)(x+2)}$
C. $f(x) = \frac{x-1}{(x+1)^2(x+2)}$
D. $f(x) = \frac{(x-1)^2}{(x+1)^2(x+2)}$


ORANGE

BLUE

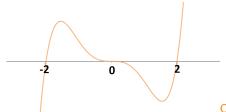
GREEN


PURPLE

A.
$$f(x) = x^3(x+2)(x-2) = x^5 - 4x^3$$

B. $f(x) = x(x+2)^3(x-2) = x^5 + 4x^4 - 16x^2 - 16x$
C. $f(x) = x(x+2)(x-2)^3 = x^5 - 4x^4 + 16x^2 - 16x$

A.
$$f(x) = x^3(x+2)(x-2) = x^5 - 4x^3$$


A.
$$f(x) = x^3(x+2)(x-2) = x^5 - 4x^3$$

B. $f(x) = x(x+2)^3(x-2) = x^5 + 4x^4 - 16x^2 - 16x$

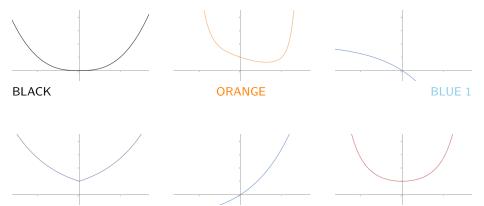
C.
$$f(x) = x(x+2)(x-2)^3 = x^5 - 4x^4 + 16x^2 - 16x$$

PURPLE

BLACK

ORANGE

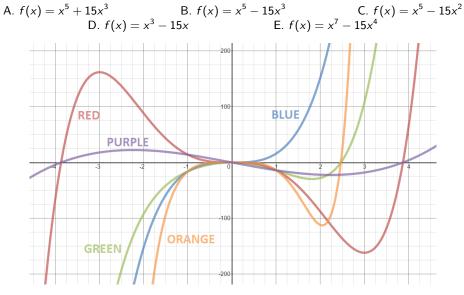
A. $f(x) = |x|^{e}$


PURPLE

B. $f(x) = e^{|x|}$

C. $f(x) = e^{x^2}$

 $D. f(x) = e^{x^4 - x}$


RED

BLUE 2

A.
$$f(x) = x^5 + 15x^3$$
 B. $f(x) = x^5 - 15x^3$ C. $f(x) = x^5 - 15x^2$ D. $f(x) = x^3 - 15x$ E. $f(x) = x^7 - 15x^4$

·

