Chapter 3.6: Sketching Graphs  3.6.1: Domain, Intercepts, and Asymptotes

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

V3=x2
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Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

V3=x2
)=o)
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Where might you expect f(x) to have a vertical asymptote? What does the function look
like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity
at a. Thatis, lim f(x) = +00.)

X—ra
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Example: Sketch 1

Review: find the domain of the following function.
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Where might you expect f(x) to have a vertical asymptote? What does the function look
like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity
at a. Thatis, lim f(x) = +00.)
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Where is f(x) = 0?
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Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

V3=x2
)=o)

(—1,0) U (o. \@}
Where might you expect f(x) to have a vertical asymptote? What does the function look
like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity
at a. Thatis, lim f(x) = +00.)

X—ra
Where is f(x) = 0?

What happens to f(x) near its other endpoint, x = —1?
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Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

V3=x2
)=o)

(—1,0) U (o. \@}
Where might you expect f(x) to have a vertical asymptote? What does the function look
like nearby?

(Recall: a vertical asymptote occurs at x = a if the function has an infinite discontinuity
at a. Thatis, lim f(x) = +00.)

X—a
Where is f(x) = 0?
What happens to f(x) near its other endpoint, x = —1?

https://www.desmos.com /calculator/9funm5gwrt
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Curve Sketching

Good things to check:
e Domain

e Vertical asymptotes: lim f(x) = +o0
X—ra

Intercepts: x =0, f(x) =0

Horizontal asymptotes and end behavior: lim f(x)
x—r*+oo
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Curve Sketching

Example: Sketch 2

What does the graph of the following function look like?

x—2

Fi) = (x+3)?

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes


https://www.desmos.com/calculator/hyzl5cyq7i
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Curve Sketching

Example: Sketch 2

What does the graph of the following function look like?

x—2
=

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes

https://www.desmos.com/calculator/hyzl5cyq7i
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Curve Sketching

Example: Sketch 3

What does the graph of the following function look like?

_ (x+2)(x— 3)?

F) x(x —5)


https://www.desmos.com/calculator/ploa0q7bxn
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Curve Sketching

Example: Sketch 3

What does the graph of the following function look like?

_ (x+2)(x— 3)?

F) x(x —5)

https://www.desmos.com/calculator/ploa0q7bxn


https://www.desmos.com/calculator/ploa0q7bxn

Chapter 3.6: Sketching Graphs ~ 3.6.2: First Derivative: Increasing or Decreasing

First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.


https://www.desmos.com/calculator/lxdlgmhnsl
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First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

Lo ﬂ><3 — 15x2

f(X):EX ~3


https://www.desmos.com/calculator/lxdlgmhnsl

Chapter 3.6: Sketching Graphs  3.6.2: First Derivative: Increasing or Decreasing

First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

1 4
f(x) = =x* — 2x* — 15x°
2 3
eDomain: all real numbers
elntercepts: (0, 0) jumps out; we can factor f(x) = x*(1x* — 4x — 15) then use quadratic formula to find

y-intercepts at x = @, so x &= 7 and x =~ —4.3.

eAs x goes to positive or negative infinity, function goes to infinity

of'(x) = 2x> — 4x® — 30x = 2x(x*® — 2 — 15) = 2x(x — 5)(x + 3) so critical points are x = 0, x = —3, and
x = 5. No singular points.

x ~ —4.3 x < =3 x=-3 -3 <x<0 x=0 0<x<5 x=5 x >5 x~7
f(x)=0 f7<0 CP >0 CP fF<0 cP 7 >0 f(x)=0
intercept decr I. min incr I. max decr I. min incr intercept

https://wuw.desmos.com/calculator/lxdlgmhnsl


https://www.desmos.com/calculator/lxdlgmhnsl
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Example: Sketch 5

What does the following function look like?

f(x) = %x3 +2x° + 4x + 24


https://www.desmos.com/calculator/xum0mstmiv

Chapter 3.6: Sketching Graphs  3.6.2: First Derivative: Increasing or Decreasing

Example: Sketch 5

What does the following function look like?

f(x) = %X3 +2x° + 4x + 24
eDomain: all real numbers. No VA. Goes to £o0.
of(0) = 24; f(x) = 2x*(x + 6) + 4(x + 6) = (3x° + 4)(x + 6), so only one root:
f(—6) =0.

of'(x) = x* + 4x4 = (x + 2)%; only one critical point, at x = —2, and increasing
everywhere else

oS0, at the left, comes from negative infinity; levels crosses x-axis at x = —6; levels out
at x = —2; crosses y-axis at y = 24; carries on to infinity

https://www.desmos.com/calculator/xumOmstmiv


https://www.desmos.com/calculator/xum0mstmiv

Chapter 3.6: Sketching Graphs  3.6.2: First Derivative: Increasing or Decreasing

Example: Sketch 6

What does the graph of the following function look like?

x+1

f(x) =ex-1


https://www.desmos.com/calculator/x0cccy1ggj

Chapter 3.6: Sketching Graphs  3.6.2: First Derivative: Increasing or Decreasing

Example: Sketch 6

What does the graph of the following function look like?

f(x) = ex-t

eDomain: x # 1 eVA: something weird happens at x = 1. Check out limits:

.o x+1 . . . .
lim X1 _ —oo and lim BRI 00,50 lim f(x)= lim e* =0 while
x—1— X — 1 x—=1t x — 1 x—1— A——o0
lim f(x) = lim " =
x—1F
eHorizontal asymptotes: lim f(x) =e
x—+oo

elntercepts: the function is never zero; f(0) = 1.

eDerivative: f'(x) = exi (ﬁ) so the function is always decreasing (when it's
defined!)

eSo, on either end, it gets extremely close to e; as we move left to right, it dips to % at
the y-axis; gets nearly to the x-axis at 1; then has a VA from the right only at 1; then
dips back to very close to e.

https://www.desmos.com/calculator/x0cccylggj


https://www.desmos.com/calculator/x0cccy1ggj

Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity




Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > O

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > O

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

Slopes are increasing
f'//(X) > 0

“concave up”



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Concavity

y y
X
Slopes are increasing Slopes are decreasing
f’(x) >0

“concave up”
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Concavity
y y
X
Slopes are increasing Slopes are decreasing
f’(x) >0 f'(x) <0

“concave up”
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Concavity

y y
X
Slopes are increasing Slopes are decreasing
f’(x) >0 f'(x) <0

“concave up” “concave down”
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Concavity

y y
X
Slopes are increasing Slopes are decreasing
f’(x) >0 f'(x) <0
“concave up” “concave down”

tangent line below curve tangent line above curve
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Mnemonic
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3.6.3: Second derivative: concavity

Chapter 3.6: Sketching Graphs

Concavity
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concave up
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Concavity

concave up concave down



Concavity

Chapter 3.6: Sketching Graphs

3.6.3: Second derivative: concavity
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Concavity

inflection point

inflection point

concave up concave down concave up
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Concavity

inflection point

inflection point

f"(x) changes sign

concave up concave down concave up
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Poll Questions

Describe the concavity of the function f(x) = e*.
A. concave up

concave down

concave up for x < 0; concave down for x > 0

concave down for x < 0; concave up for x >0

mUO N w

I'm not sure
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Poll Questions

Describe the concavity of the function f(x) = e*.

A.
B.
C.
D.
E.

concave up

concave down

concave up for x < 0; concave down for x > 0
concave down for x < 0; concave up for x >0

I'm not sure

Is it possible to be concave up and decreasing?

A. Yes B. No

C.

Iy

m not sure
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Poll Questions

Describe the concavity of the function f(x) = e*.

A. concave up

B. concave down

C. concave up for x < 0; concave down for x > 0

D. concave down for x < 0; concave up for x > 0

E. I'm not sure
Is it possible to be concave up and decreasing?

A. Yes B. No C. I'm not sure

Suppose a function f(x) is defined for all real numbers, and is concave up on the interval
[0,1]. Which of the following must be true?

A. f(0) < f'(1)
f(0) > f'(1)
f'(0) is positive
'(0) is negative

mO N w

I'm not sure



Chapter 3.6: Sketching Graphs  3.6.3: Second derivative: concavity

Poll Questions

Describe the concavity of the function f(x) = e*.
A. concave up
B. concave down
C. concave up for x < 0; concave down for x > 0
D. concave down for x < 0; concave up for x > 0
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes B. No C. I'm not sure

Suppose a function f(x) is defined for all real numbers, and is concave up on the interval
[0,1]. Which of the following must be true?
A. f'(0) < f'(1)
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f'(0) is positive
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I'm not sure
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From Last Time

Example: Sketch 6.5

1 4
f(x) = §x4 - §x3 —15x°
y
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From Last Time

Example: Sketch 6.5

f(x) = %x4 - gx3 —15x°

—229.16 — e

f"(x) = 6x* — 8x — 30 = 2(x — 3)(3x + 5)



From Last Time

Example: Sketch 6.5

Chapter 3.6: Sketching Graphs

2

3.6.3: Second derivative: concavity

1, 4,
f(x) = 5% — 3% 15x
y
L N
~5" AN
. — —585
—229.16 —

f"(x) = 6x* — 8x — 30 = 2(x — 3)(3x + 5)
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From Last Time

Example: Sketch 6.5

f(x) = %x4 - gx3 —15x°

—229.16

f"(x) = 6x* — 8x — 30 = 2(x — 3)(3x + 5)



Chapter 3.6: Sketching Graphs  3.6.4 : Symmetries

Example: Sketch 7

Sketch:
f(x) = x* — 15x>


https://www.desmos.com/calculator/uoii6nmgr8

Chapter 3.6: Sketching Graphs ~ 3.6.4 : Symmetries

Example: Sketch 7

Sketch:
f(x) = x* — 15x>

Symmetry!


https://www.desmos.com/calculator/uoii6nmgr8

Chapter 3.6: Sketching Graphs  3.6.4 : Symmetries

Example: Sketch 7

Sketch:
f(x) = x> —15x°

Symmetry!

eDefined and differentiable for all real numbers.

eRoots: x =0, x = £/15~ 4

eGoes to +00 as x goes to +oo

eCP: x =0, x = £3. Increasing on (—o0, —3), decreasing (—3,0) and (0, 3), decreasing
(3,0)

S0, local max at x = —3 and local min at x = 3

of'(x) =0 for x =0 and x = :I:% ~ +2. All of these are inflection points; concave

down (—o0, f%) concave up (%,0), concave down (0, %) and concave up (%, 00).
of(3) = —162, f(—3) = —162, f(—3/+/2) =~ 100, f(3/+/2) ~ —100
https://www.desmos.com/calculator/uoiibnmgr8


https://www.desmos.com/calculator/uoii6nmgr8

Chapter 3.6: Sketching Graphs

Even and Odd Functions

3.6.4 : Symmetries

S —

f(x) = x* — 15x°
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Even and Odd Functions

3.6.4 : Symmetries

S —

f(x) = x* — 15x°
odd function
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3.6.4 : Symmetries
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Even and Odd Functions

3.6.4 : Symmetries

even function
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

even function
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(3a _1)
even function

Suppose f(3) = —1.
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(3a _1)
even function

Suppose f(3) = —1.Then f(—-3) =
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(-3,—-1) (3,-1)
even function

Suppose f(3) = —1.Then f(—3) =—1 also.
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(-3,—-1) (3,-1)
even function

Suppose f(3) = —1.Then f(—3) =—1 also.
Suppose f(6) = 1.
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(-3,—-1) (3,-1)
even function

Suppose f(3) = —1.Then f(—3) =—1 also.
Suppose f(6) = 1.Then f(—6) =
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

(-3,—-1) (3,-1)
even function

Suppose f(3) = —1.Then f(—3) =—1 also.
Suppose f(6) = 1.Then f(—6) =1 also.
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

Examples:
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A function f(x) is even if, for all x in its domain,
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)

Examples:
f(x) = x?
f(x) = x*
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)
Examples:
f(x) = x?
f(x) = x*

f(x) = cos(x)
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Even Functions

Even Function

A function f(x) is even if, for all x in its domain,

f(—x) = f(x)
Examples:
f(x) = x
f(x) =
f(x)= cos(x)
Flx) = x* + cos(x)

x16 +7
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Odd Functions

odd function
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Odd Functions

y (1»2)

odd function

Suppose f(1) = 2.



Chapter 3.6: Sketching Graphs ~ 3.6.4 : Symmetries

Odd Functions

y (1»2)

odd function

Suppose f(1) = 2.Then f(—1) =
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Odd Functions

y (1»2)

(_17 _2)
odd function

Suppose f(1) = 2.Then f(—1) =-2.
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Odd Functions

y (1»2)

(—1, —2) (37 _2)
odd function

Suppose f(1) = 2.Then f(—1) =-2.
Suppose f(3) = —2.
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Odd Functions

y (1»2)

(—1, —2) (37 _2)
odd function

Suppose f(1) = 2.Then f(—1) =-2.
Suppose f(3) = —2.Then f(—3) =
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Odd Functions

(_3>2) y (1»2)

(—1, —2) (37 _2)
odd function

Suppose f(1) = 2.Then f(—1) =-2.
Suppose f(3) = —2.Then f(—3) =2.
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Odd Functions

(_3’2) y (1’2)

(—1, —2) (37 _2)
odd function

Suppose f(1) = 2. Then f(—1) =-2.
Suppose f(3) = —2.Then f(—3) =2.

Even Function

A function f(x) is odd if, for all x in its domain,
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Odd Functions

(_3’2) y (1’2)

(—1, —2) (37 _2)
odd function

Suppose f(1) = 2. Then f(—1) =-2.
Suppose f(3) = —2.Then f(—3) =2.

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)
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Even Functions

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)

Examples:
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Even Functions

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)

Examples:
f(x) =x
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Even Functions

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)

Examples:
f(x) =x
f(x)=x
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Even Functions

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)
Examples:
f(x) =x
f(x)=x

f(x) = sin(x)
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Even Functions

Even Function

A function f(x) is odd if, for all x in its domain,

f(—x) = —f(x)
Examples:
f(x) = x
f(x)=
f(x)= sm(x)
Flx) = x(14 x%)

x2+5
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Poll Tiiime

Pick out the odd function.
y y
A: B:
y y
7~£ X AFZ X
C: D:
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Poll Tiiime

Pick out the odd function.
y y
A: B:
y y
7~£ X AFZ X
C: D:
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Poll Tiiime

Pick out the even function.
y y
A: B:
y y
7~£ X AFZ X
C: D:
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Poll Tiiime

Pick out the even function.
y y
A: B:
y y
7~£ X AFZ X
C: D:
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Suppose f(x) is an odd function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. £(0) = f(—0)
£(0) = —£(0)
£(0)=0

all of the above are true

mO N w

none of the above are necessarily true
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Suppose f(x) is an odd function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. £(0) = f(—0)
£(0) = —£(0)
f(0)=0

all of the above are true

moU 0w

none of the above are necessarily true
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Suppose f(x) is an odd function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. f(0) = f(—0) <— true but uninteresting, for all functions
f(0) = —£(0)
f(0)=0

all of the above are true

moU 0w

none of the above are necessarily true
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Suppose f(x) is an odd function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. f(0) = f(—0) <— true but uninteresting, for all functions
f(0) = —f(0) <— only possible for f(0) =0
f(0)=0

all of the above are true

moU 0w

none of the above are necessarily true
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Suppose f(x) is an odd function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. f(0) = f(—0) <— true but uninteresting, for all functions
f(0) = —f(0) <— only possible for f(0) =0
f(0) = 0 <— this is equivalent to the choice above

all of the above are true

moU 0w

none of the above are necessarily true
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Suppose f(x) is an even function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. £(0) = f(—0)
£(0) = —£(0)
£(0)=0

all of the above are true

mO N w

none of the above are necessarily true
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Suppose f(x) is an even function, continuous, defined for all real numbers. What is £(0)?
Pick the best answer.

A. £(0) = f(~0)
£(0) = —£(0)
£(0)=0

all of the above are true

mO N w

none of the above are necessarily true
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OK OK... last one

Suppose f(x) is an even function, differentiable for all real numbers. What can we say
about f'(x)?

A. f'(x) is also even
f'(x) is odd
f'(x) is constant

all of the above are true

mO N w

none of the above are necessarily true
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OK OK... last one

Suppose f(x) is an even function, differentiable for all real numbers. What can we say
about f'(x)?

A. f'(x) is also even
f'(x) is odd
f'(x) is constant

all of the above are true

mO N w

none of the above are necessarily true
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Periodicity

Periodic

A function is periodic with period P if
f(x)=f(x+ P)

whenever x and x 4+ P are in the domain of f, and P is the smallest such (positive)
number

Examples: sin(x), cos(x) both have period 27; tan(x) has period .
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Example: Sketch 8

f(x) = sin(sin x)

(ignore concavity)
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Example: Sketch 8

f(x) = sin(sin x)

(ignore concavity)

Example: Sketch 9

g(x) = sin(27 sin x)
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Let's Graph

Example: Sketch 10

f(x) = (x* — 64)"/°
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Let's Graph

Example: Sketch 10

f(x) = (x* — 64)"/°

2x
Flx) =
) = 30— 6y

sy = 20
3(x2 — 64)5/3
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Let's Graph

Example: Sketch 11

X2+ x
)= e e
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Let's Graph

Example: Sketch 11

. X2+ x
)= Groe v 1y
x(x+1) X

Note for x # —1, f(x) = rD(2+12  (x211)
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Let's Graph

Example: Sketch 11

. X2+ x
)= Groe v 1y
x(x+1) X

Note for x # —1, f(x) = =

IR CE G S CaE

g(x) = m
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Let's Graph

Example: Sketch 11

. X2+ x
)= Groe v 1y
x(x+1) X

Note for x # —1, f(x) = =

IR CE G S CaE

g(x) = m

oy 1=33 0 12x(x* - 1)
g(X)—mvg(X)—W
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Let's Graph

Example: Sketch 13

F(x) = x(x — 1)*3
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Match the Function to its Graph

x—1
A= D)
o (x—1y?
B. 1) = G D7)
C )= T2
D. f(x) = — X1

(x+1)2(x+2)
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Match the Function to its Graph

x—1
A= D)
o (x—1y
B. 1) = G D7)
C = 6 i)
_ (x 4—1)2
D. f(x) = 7()(4_ 1)2(X+ 2)
ORANGE

3.6.5: A checklist for sketching

BLUE

GREEN

PURPLE
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Match the Function to its Graph

A f(x)=x3(x+2)(x —2) = x° — 4x°
B. f(x) = x(x +2)3(x — 2) = x° + 4x* — 16x* — 16x
C. f(x) = x(x +2)(x — 2)* = x* — 4x* + 16x°> — 16x
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Match the Function to its Graph

A f(x)=x3(x+2)(x —2) = x° — 4x°
B. f(x) = x(x +2)3(x — 2) = x° + 4x* — 16x* — 16x
C. f(x) = x(x +2)(x — 2)* = x* — 4x* + 16x°> — 16x

2 0 2

PURPLE BLACK

-2 0 2
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Match the Function to its Graph

A. f(x) = |x|° B. f(x) = M C. f(x) = e D. f(x) = &~
| | | ~
BLACK ORANGE
\ | / // | |
/
~_ ] _~ // \\ /
yd T

PURPLE RED
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Match the Function to its Graph

A f(x) = x® 4+ 15x° B. f(x) = x*> — 15x° C. f(x) = x* — 15x?
D. f(x) = x* — 15x E. f(x) = x" — 15x*
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Match the Function to its Graph

A. f(x) = x> +15x° B. f(x) = x*> — 15x° C. f(x) = x* — 15x2
D. f(x) = x> — 15x E. f(x) = x" — 15x"

e

RED

200 J \ |

[ 1]

e

=
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