Concavity

You have already seen that locating the intervals in which a function f increases or
decreases helps to describe its graph. In this section, you will see how locating the
intervals in which f” increases or decreases can be used to determine where the graph
of fis curving upward or curving downward.

Definition of Concavity

Let f be differentiable on an open interval I. The graph of fis concave upward
on I when f” is increasing on the interval and concave downward on [ when
[’ is decreasing on the interval.

The following graphical interpretation of concavity is useful. (See Appendix A for
a proof of these results.) See LarsonCalculus.com for Bruce Edwardss video of this proof.

1. Let f be differentiable on an open interval I. If the graph of fis concave upward on
I, then the graph of f lies above all of its tangent lines on /.
[See Figure 3.23(a).]

2. Let f be differentiable on an open interval [. If the graph of f is concave downward
on [, then the graph of f lies below all of its tangent lines on I.
[See Figure 3.23(b).]



Concave upward,
f' 1s increasing.

{a) The graph of f lies above its tangent lines.

Figure 3.23

Concave downward,
[’ 1s decreasing.

{b) The graph of flies below its tangent lines.
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NOTE: Point A is called the point of INFLECTION. This
is where f"'(x)=0. This is where the curve goes from being
Concave

"Cup Up" to "Cup Down" or from "Cup Down" to "Cup Up."

To find the open intervals on which the graph of a function fis concave upward or
concave downward, you need to find the intervals on which f” is increasing or decreasing.
For instance, the graph of

flx) = %x-‘ — X

is concave downward on the open interval (— oo, 0) because

Flx) =x2— 1

is decreasing there. (See Figure 3.24.) Similarly, the graph of f is concave upward on
the interval (0, oc) because f is increasing on (0, co).
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The concavity of fis related to the
slope of the derivative.

Figure 3.24




THEOREM 2.7 Test for Concavity

Let f be a function whose second derivative exists on an open interval /.

1. If f”(x) > O for all x in I, then the graph of fis concave upward on /.
2. If f”(x) < O for all x in I, then the graph of fis concave downward on 1.

A proof of this theorem 1s given in Appendix A.
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From the sign of f”, you can determine
the concavity of the graph of f.
Figure 3.25

EXAMPLE 1 - Determining Concavity

Determine the open intervals on which the graph of

6
i x5

is concave upward or downward.

Solution Begin by observing that f is continuous on the entire real number line.
Next, find the second derivative of f.

f(‘t;l == 6{1‘2 7 3}_| Rewrite onginal function.
f"[-ﬂ = [_6]{‘{2 = 3_}_2(21'} Differentiate.
= Z+ 3}2 irst derivative
2 _|_ 2. SN PR - 2 _|_ |
fﬂ(x] =3 b 3F-12) (12{_'_ 1,%2]‘;){ )[x2 3)(—1.) Differentiate.
3602 = 1) B
= (,1:2 . 3]3 econd derivative

Because f”(x) = 0 when x = +1 and f” is defined on the entire real number line, you
should test f”in the intervals (—oo, —1), (—1, 1), and (1, cc). The results are shown in
the table and in Figure 3.25.



Interval S0 e e = o Q- 1 € x<a0
Test Value x= —2 x=0 x=2
Signof f"(x) | f"(—2)>0 r(0) < 0 f4(2) =0
Conclusion Concave upward | Concave downward | Concave upward

The function given in Example 1 is continuous on the entire real number line.
When there are x-values at which the function is not continuous, these values should be
used. along with the points at which f”(x) = 0 or f”(x) does not exist, to form the test

intervals.
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The concavity of f changes at a point
of inflection. Note that the graph
crosses its tangent line at a point

of inflection.

Figure 3.27

Points of Inflection

The graph in Figure 3.25 has two points at which the concavity changes. If the
tangent line to the graph exists at such a point, then that point is a point of inflection.
Three types of points of inflection are shown in Figure 3.27.

Definition of Point of Inflection

Let f be a function that is continuous on an open interval, and let ¢ be a point
in the interval. If the graph of f has a tangent line at this point (c, f(c)), then
this point is a point of inflection of the graph of f when the concavity of f
changes from upward to downward (or downward to upward) at the point.

es o0« HEVMIARK  The definition of point of inflection requires that the tangent line exists

at the point of inflection. Some books do not require this. For instance, we do not
consider the function

X, xz )
2+ =0

) =

to have a point of inflection at the origin, even though the concavity of the graph
changes from concave downward to concave upward.
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Points of inflection can occur where
f"(x) = 0 or f” does not exist.
Figure 3.28

To locate possible points of inflection, you can determine the values of x for which
f"x) = 0 or f"(x) does not exist. This is similar to the procedure for locating relative
extrema of f.

THEOREM 2.2 Points of Inflection

If (¢, f(c)) is a point of inflection of the graph of £, then either f"(¢) = 0 or f”
does not exist at x = c¢.

Finding Points of Inflection

Determine the points of inflection and discuss the concavity of the graph of

flx) =x%*— &7,

Solution Differentiating twice produces the following.

f{I} =gt 433 Write original function.
f’{l‘} = 47 — 1242 Find first derivative.
f”{.r} =12 —24x= 121(1’ = 2] Find second derivative.

Setting f”(x) = 0, you can determine that the possible points of inflection occur at
x =0 and x = 2. By testing the intervals determined by these x-values, you can
conclude that they both yield points of inflection. A summary of this testing is shown
in the table, and the graph of f is shown in Figure 3.28.



Interval —ein &x2 ) Dewx<g 2 2L X <aoo
Test Value x= —1 x =1 x=13

Sign of f”(x) =04 (1) <0 f’(3) >0
Conclusion Concave upward | Concave downward | Concave upward




The converse of Theorem 3.8 is not generally true. That is, it is possible for the
second derivative to be 0 at a point that is not a point of inflection. For instance, the
graph of f(x) = x* is shown in Figure 3.29. The second derivative is 0 when x = 0, but

the point (0, 0) is not a point of inflection because the graph of f is concave upward in
both intervals —co < x < 0and 0 < x < co.

f"(x) = 0, but (0, 0) is not a point of inflection.
Figure 3.29



We will use this for investigating
the second derivative.

DEFINITION OF EXTREMA

Let f be defined on an interval / containing c.

1. f(c) is the minimum of fon [ if f(¢) = f(x) for all x in L.
2. flc) is the maximum of fon I if f(c) = f(x) for all xin /.

The minimum and maximum of a function on an interval are the extreme
values, or extrema (the singular form of extrema 1s extremum), of the
function on the interval. The minimum and maximum of a function on an
interval are also called the absolute mmmimum and absolute maximum, or
the global minimum and global maximum, on the interval.

Example of (1) Example of (2)
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The Second Derivative Test

In addition to testing for concavity, the second derivative can be used to perform a
simple test for relative maxima and minima. The test is based on the fact that if the
graph of a function fis concave upward on an open interval containing ¢, and f'(c) = 0,
then f(¢) must be a relative minimum of f. Similarly, if the graph of a function f is
concave downward on an open interval containing ¢, and f'(¢) = 0, then f(c) must be a
relative maximum of f (see Figure 3.30).

THEOREM 2.9 Second Derivative Test

Let f be a function such that f(¢) = 0 and the second derivative of f exists on
an open interval containing c.

1. If f"(c) > 0, then f has a relative minimum at (¢, f(c)).

2. If f"(c) < 0, then fhas a relative maximum at (c, f(c)).

If f”(c) = 0, then the test fails. That is, f may have a relative maximum, a
relative minimum, or neither. In such cases, you can use the First Derivative Test.

Proof Iff'(c) = Oandf"(c) > 0, then there exists an open interval / containing ¢ for
which

fx) = fle) _ fx)

Xx— @ X —f

=0



forall x#cin Il If x <c. then x — ¢ <0 and f(x) < 0. Also, if x > ¢, then
x — ¢ > 0and f(x) > 0. So, f(x) changes from negative to positive at ¢, and the First
Derivative Test implies that f(c) is a relative minimum. A proof of the second case is
left to you. =




Using the Second Derivative Test

« « « « > See LarsonCalculus.com for an interactive version of this type of example.
Find the relative extrema of
flx) = =3x° + 523,
Solution Begin by finding the first derivative of f.
fix) = —15x% + 152 = 15231 — &9)
/ y Relative From this derivative, you can see that x = — 1, 0, and | are the only critical numbers of

:':“’;*;‘““" f. By finding the second derivative

f7(x) = —60x* + 30x = 30x(1 — 2+?)

you can apply the Second Denvative Test as shown below.

Point (-1.—3) (0,0) (1,2)
Sign of f(x) f=1)>0 f0)=0 ff1) <0

Conclusion Relative minimum | Test fails | Relative maximum

-1,-2)¥ -2

Relative

minimum Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test
(0, 0) is neither a relative minimum nor and observe that f increases to the left and nght of x = 0. So, (0, 0) 1s neither a
a relative maximum. relative mimimum nor a relative maximum (even though the graph has a honizontal

Figure 3.31 tangent line at this point). The graph of fis shown in Figure 3.31. o




