

# S 4.3 Monotonic Functions and the First Derivative Test

Dr. Bisher M. Iqelan biqelan@iugaza.edu.ps

Department of Mathematics The Islamic University of Gaza

2019-2020, Semester 1

🕏 Fact

**Topics:** In this section, we will look at two main ideas:

- Identifying where functions are increasing and where they are decreasing.
- 2 The first derivative test.

#### Learning Objectives:

For the topics in this section, students are expected to be able to:

- 1 Determine where a function is increasing or decreasing.
- 2 Classify critical points using the first derivative test.
- 3 Sketch functions using the first derivative and the first derivative test.

### What We Will Look At

#### Motivation

- In sketching the graph of a function it is useful to know where it increases and where it decreases over an interval.
- This section gives a test to determine where a function increases and where it decreases.
- We also explore one method for testing the critical points of a function to identify whether local extreme values are present.

Definition: Increasing and Decreasing Functions

- **1** A function f is increasing on an interval I if for any  $x_1, x_2 \in I$  with  $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ .
- **2** A function f is decreasing on an interval I if for any  $x_1, x_2 \in I$  with  $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ .
- **3** A function f is constant on an interval I if for any  $x_1, x_2 \in I$  with  $x_1 < x_2 \Rightarrow f(x_1) = f(x_2)$ .

#### Note

A function f is increasing if , as x moves to the right, its graph moves up and is decreasing if its graph moves down and it is constant if the graph moves horizontally. See Figure



# Derivatives and Increasing and Decreasing Functions

Theorem

Let f be a continuous function on the closed interval [a, b], differentiable on the open interval (a, b).

- If f'(x) > 0 for all  $x \in (a, b)$ , then f is increasing on an interval [a, b].
- If f'(x) < 0 for all  $x \in (a, b)$ , then f is decreasing on an interval [a, b].

A function that is increasing (or decreasing) on an interval is **monotonic** on that interval.

#### Guidelines for finding intervals on which a function f is monotonic

To find the intervals on which a function f is monotonic:

- 1 Find the critical numbers of *f*.
- 2 The critical numbers will divide the domain into subintervals.
- **3** Test the sign of f' on each subinterval you got in step 2.

4 Positive sign means f is increasing and negative sign means f is decreasing.

THE

### Monotonic Functions and The First Derivative Test

#### Example 1

Find the intervals on which  $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$  is increasing decreasing. Solution: Note that f is a polynomial, then it is continuous on  $\mathbb{R}$ . So to find the critical numbers, set f'(x) = 0.

$$f'(x) = 0 \Rightarrow 12x^3 - 12x^2 - 24x = 0$$

$$\Rightarrow 12x(x^2 - x - 2) = 0$$

 $\Rightarrow 12x(x-2)(x+1) = 0$  Hence f'(x) = 0 if x = -1, 0, 2.

So the critical numbers are x = -1, 0, 2. To find the intervals of increasing and decreasing we find the sign of each factor of f'(x) and we get the following chart.





# First Derivative Test for Local Extrema

Theorem

Let f be a continuous function on the closed interval [a, b], and let  $c \in (a, b)$  be a critical number for f. If f is differentiable on the open interval (a, b) except possibly at c.

• If f'(x) > 0 for all a < x < c, and f'(x) < 0 for all c < x < b, (f'(x) changes from positive to negative at c), then f(c) is a local maximum.

• If f'(x) < 0 for all a < x < c, and f'(x) > 0 for all c < x < b, (f'(x) changes from negative to positive at c), then f(c) is a local minimum.

• If f'(x) does not change sign at c, then f(c) has no local extreme.



# Example 1: Re-visit

### Example 2

Find the local extreme for  $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ . Solution: From the discussion in Example 1, and using the same chart of signs



So f is increasing on the intervals  $(-1, 0) \cup (2, \infty)$  and decreasing on  $(-\infty, 1) \cup (0, 2)$ . It follows from the first derivative test that f has a local maximum at x = 0 with value f(0) = 1. Also f has a local minimum at x = -1 and x = 2 with value f(-1) = -4 and f(2) = -31. See the graph of the function again.

# First Derivative Test for Local Extrema

Example 3 Find the local extreme for  $f(x) = \frac{x}{2} + \sin x$  in the interval  $(0, 2\pi)$ . **Solution**: Note that f is continuous on  $(0, 2\pi)$ . To find the critical numbers, set  $f'(x) = 1/2 + \cos x = 0$ . Now,  $\frac{4\pi}{3}$  $f'(x) = 0 \Leftrightarrow 1/2 + \cos x = 0$  $2\pi$ π  $\frac{3\pi}{2}$ Test Value  $\Leftrightarrow \cos x = -1/2$ f'(Test Value)  $f'(\frac{\pi}{2}) = \frac{1}{2}$  $f'(\pi) = \frac{-1}{2}$  $f'(\frac{3\pi}{2}) = \frac{1}{2}$  $\Leftrightarrow x = 2\pi/3 \& x = 4\pi/3.$ sign of f'(x)+Hence f'(x) = 0 if  $x = 2\pi/3$ ,  $x = 4\pi/3$ in  $(0, 2\pi)$ . So the critical numbers in Concl Inc Dec  $(0, 2\pi)$  are  $x = 2\pi/3, x = 4\pi/3$ . To find the intervals of increasing and  $f(x) = \frac{x}{2} + \sin x$  $y_{\star}$ decreasing we find the sign of f'(x)and we get the following chart.  $f'(x) = \frac{1}{2} + \cos x$ 3 So f is increasing on the intervals  $(0, 2\pi/3) \cup (4\pi/3, 2\pi)$  and decreasing  $\mathbf{2}$ on  $(2\pi/3, 4\pi/3)$ . It follows from the first derivative test that f has a local maximum at  $x = 2\pi/3$  with value  $f(2\pi/3) = \pi/3 + \sqrt{3}/2$ . Also f has a local minimum at  $x = 4\pi/3$  with  $\frac{2\pi}{3}$  $\frac{\pi}{3}$  $\frac{4\pi}{3}$  $\frac{5\pi}{3}$  $2\pi$ value  $f(4\pi/3) = 2\pi/3 - \sqrt{3}/2$ .

9/9