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What We Will Look At

Topics: In this section, we will look at two main ideas:

1 Identifying where functions are increasing and where they are
decreasing.

2 The �rst derivative test.

Learning Objectives:

For the topics in this section, students are expected to be able to:

1 Determine where a function is increasing or decreasing.

2 Classify critical points using the �rst derivative test.

3 Sketch functions using the �rst derivative and the �rst
derivative test.

Fact
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What We Will Look At

• In sketching the graph of a function it is useful to know
where it increases and where it decreases over an interval.

• This section gives a test to determine where a function
increases and where it decreases.

• We also explore one method for testing the critical points of
a function to identify whether local extreme values are
present.

Motivation
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1 A function f is increasing on an interval I if for any x1, x2 ∈ I with
x1 < x2 ⇒ f (x1) < f (x2).

2 A function f is decreasing on an interval I if for any x1, x2 ∈ I with
x1 < x2 ⇒ f (x1) > f (x2).

3 A function f is constant on an interval I if for any x1, x2 ∈ I with
x1 < x2 ⇒ f (x1) = f (x2).

De�nition: Increasing and Decreasing Functions

♣

;

Note

A function f is increasing if , as x moves to the right, its graph moves up
and is decreasing if its graph moves down and it is constant if the graph
moves horizontally. See Figure
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Derivatives and Increasing and Decreasing Functions

Let f be a continuous function on the closed interval [a, b], di�erentiable on
the open interval (a, b).

• If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on an interval [a, b].

• If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on an interval [a, b].

A function that is increasing (or decreasing) on an interval is monotonic on
that interval.

Theorem

♣

Guidelines for �nding intervals on which a function f is monotonic

To �nd the intervals on which a function f is monotonic:

1 Find the critical numbers of f .

2 The critical numbers will divide the domain into subintervals.

3 Test the sign of f ′ on each subinterval you got in step 2.

4 Positive sign means f is increasing and negative sign means f is decreasing.
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Monotonic Functions and The First Derivative Test

Find the intervals on which f (x) = 3x4− 4x3− 12x2+ 1 is increasing decreasing.
Solution: Note that f is a polynomial, then it is continuous on R. So to �nd the
critical numbers, set f ′(x) = 0.

f ′(x) = 0⇒ 12x3 − 12x2 − 24x = 0

⇒ 12x(x2 − x − 2) = 0

⇒ 12x(x − 2)(x + 1) = 0

Hence f ′(x) = 0 if x = −1, 0, 2.

So the critical numbers are
x = −1, 0, 2. To �nd the intervals of
increasing and decreasing we �nd the
sign of each factor of f ′(x) and we get
the following chart.

So f is increasing on the intervals
(−1, 0) ∪ (2,∞) and decreasing on
(−∞, 1) ∪ (0, 2). See the graph of f .

Example 1
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First Derivative Test for Local Extrema

Let f be a continuous function on the closed interval [a, b], and let c ∈ (a, b) be a
critical number for f . If f is di�erentiable on the open interval (a, b) except possibly
at c.

• If f ′(x) > 0 for all a < x < c, and f ′(x) < 0 for all c < x < b, (f ′(x)
changes from positive to negative at c), then f (c) is a local maximum.

• If f ′(x) < 0 for all a < x < c, and f ′(x) > 0 for all c < x < b, (f ′(x)
changes from negative to positive at c), then f (c) is a local minimum.

• If f ′(x) does not change sign at c, then f (c) has no local extreme.

Theorem

♣
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Example 1: Re-visit

Find the local extreme for f (x) = 3x4 − 4x3 − 12x2 + 1.
Solution: From the discussion in Example 1, and using the same chart of signs

So f is increasing on the intervals (−1, 0)∪ (2,∞) and decreasing on (−∞, 1)∪
(0, 2). It follows from the �rst derivative test that f has a local maximum at
x = 0 with value f (0) = 1. Also f has a local minimum at x = −1 and x = 2
with value f (−1) = −4 and f (2) = −31. See the graph of the function again.

Example 2
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First Derivative Test for Local Extrema

Find the local extreme for f (x) = x
2
+ sin x in the interval (0, 2π).

Solution: Note that f is continuous on (0, 2π). To �nd the critical numbers, set
f ′(x) = 1/2+ cos x = 0. Now,
f ′(x) = 0⇔ 1/2+ cos x = 0

⇔ cos x = −1/2
⇔ x = 2π/3 & x = 4π/3.

Hence f ′(x) = 0 if x = 2π/3, x = 4π/3
in (0, 2π). So the critical numbers in
(0, 2π) are x = 2π/3, x = 4π/3. To
�nd the intervals of increasing and
decreasing we �nd the sign of f ′(x)
and we get the following chart.
So f is increasing on the intervals
(0, 2π/3) ∪ (4π/3, 2π) and decreasing
on (2π/3, 4π/3). It follows from the
�rst derivative test that f has a local

maximum at x = 2π/3 with value

f (2π/3) = π/3+
√
3/2. Also f has a

local minimum at x = 4π/3 with
value f (4π/3) = 2π/3−

√
3/2.

Example 3
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