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Abstract

This work presents the traditional material of calculus I with some of the material
from a traditional precalculus course interwoven throughout the discussion. Pre-
calculus topics are discussed at or soon before the time they are needed, in order
to facilitate the learning of the calculus material. Miniature animated demonstra-
tions and interactive quizzes will be available to help the reader deepen his or her
understanding of the material under discussion.

This project is funded in part by the Mellon Foundation through the Mellon Furman-
Wofford Program. Many of the illustrations were designed by Furman undergraduate
student Brian Wagner using the PSTricks package. Thanks go to my wife Suzan, and my
two daughters, Hannah and Darby for patience while this project was being produced.
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1. Monotonicity
We all have an intuitive idea about what it means for a function to “go up”
or increase (or to do the opposite: “go down” or decrease.) Let’s formalize
this idea with a definition:

We say that a function is increasing on an interval I if
for all x1, x2 ∈ I with x1 < x2 we have f(x1) < f(x2).
We say that f(x) is decreasing on an interval I if for all
x1, x2 ∈ I with x1 < x2 we have f(x1) > f(x2)

For example, f(x) = x2 is increasing on the interval [0,∞) and decreas-
ing on the interval (−∞, 0]. A function is said to be monotonic on an
interval I if it is strictly increasing or strictly decreasing on I. In attempt-
ing to understand the geometry of the graph of a particular function f(x),
it is desirable to find the intervals on which the function is monotonic. Of
course, it is most interesting to find the largest such intervals. There is a
clear and almost obvious relationship between the derivative of a function
and the monotonicity. This can be seen by drawing a number of strictly in-
creasing functions, and drawing tangent lines on any of them at any point,
and thinking about what is always true about the slopes of the tangent
lines. You should be able to informally convince yourself pretty quickly
that they all have positive slopes. Thus there seems to be a relationship
between an increasing function and a positive derivative. Likewise, there
seems to be a relationship between a decreasing function and a negative
derivative. The following seems plausible:
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Monotonicity Theorem
If f(x) is so that f ′(x) > 0 for all x in the interval I,
then f(x) is increasing on I. If f ′(x) < 0 for all x in I,
then f(x) is decreasing on I.

The proof of the Monotonicity Theorem uses the Mean Value Theorem.
The idea is that if f ′(x) > 0 on I, and if x1 < x2 on I, then there is

a point c between x1 and x2 with f(x2)−f(x1)
x2−x1

= f ′(c). But if f ′(c) > 0,
we must have f(x2) − f(x1) > 0, since the denominator x2 − x1 > 0.
So f(x1) < f(x2), so f(x) is increasing. A similar proof works for f(x)
decreasing when f ′(x) < 0 on I. This result can be used to find the intervals
of monotonicity for a given function: by finding the largest intervals on
which the derivative of f(x) is positive, we are also finding the largest
intervals on which f(x) is increasing. A similar statement can be made
replacing the word “increasing” by “decreasing” and the word “positive”
by “negative.”

Exercise 1. Find the largest intervals of monotonicity for f(x) = x
x2+2

.

One upshot of the Monotonicity Theorem is that we can now see how
to use the first derivative to help us locate relative maximum and relative
minimums. This is because if f(x) is continuous on the interval (a, b), and
is increasing on an interval (a, c) and decreasing on (c, b) where c is between
a and b, then there must clearly be at least a relative maximum at x = c.
A similar statement can be made about relative minimums if f(x) changes
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from decreasing to increasing in the middle of some interval on which f is
continuous. These ideas are collectively know as

The First Derivative Test
Suppose that f(x) is continuous on (a, b) and differen-
tiable on (a, b) except perhaps at a point c with a < c < b.
Suppose also that either f ′(c) = 0 or f ′(c) doesn’t exist.
Then

1. If f ′(x) < 0 on (a, c) and f ′(x) > 0 on (c, b), then
there is a relative minimum value at x = c.

2. If f ′(x) > 0 on (a, c) and f ′(x) < 0 on (c, b), then
there is a relative maximum value at x = c.

3. If the sign of f ′(x) is the same on both (a, c) and
(c, b), then there is no relative extremum at x = c.

Exercise 2. Use the analysis done previously to find the relative extrema
for f(x) = x

x2+2
.
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2. Concavity

We’ve had such good luck relating the sign of the derivative of a function
to information about the graph of the function that one can’t help but
wonder whether or not the sign of the second derivative would yield any
nice information about the graph of the function. Consider the following
graph of y = sin(x).
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Note that between −π and 0, the slopes of the tangent lines are in-
creasing as we go from left to right. (The lines start out having negative
slopes, and then the slopes increase to zero, and then the lines continue
to get steeper.) Since the derivative of y = sin(x) tells us the slope of the
tangent line at a given point, we can see that the derivative of the deriva-
tive of y must be positive here. Thus the second derivative is positive. In
this situation, we say that y is concave up on the interval (−π, 0). On the
other hand, between 0 and π we see that the slopes of the tangent lines are
decreasing as we move from left to right, so the derivative of the derivative
must be negative here, so y′′ < 0 on (0, π). Summarizing:
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We say that f(x) is concave up on an interval I iff f ′′(x) >
0 on I. We say that f(x) is concave down on I iff f ′′(x) <
0 on I. If c is a point in the domain of f(x), and if f(x)
has one type of concavity on (a, c) and the other type on
(c, b), then we say that the point (c, f(c)) is a point of
inflection of f(x).

Exercise 1. Continue studying f(x) = x
x2+2

by analyzing its concavity.

It turns out that for stationary points, we can use the second derivative
to help analyze whether a given point is a relative maximum or a relative
minimum. This is because if f(x) has a relative minimum and a horizontal
tangent line at x = c, then it must be concave up there. (Try drawing
an example and see for yourself!) On the other hand if it has a relative
maximum at x = c and a horizontal tangent line, it must be concave down
there. Thus we have:
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The Second Derivative Test
Suppose that f(x) is so that f ′′(x) exists in some interval
containing c, and f ′(c) = 0.

1. If f ′′(c) < 0 then there is a relative maximum at
(c, f(c)).

2. If f ′′(c) > 0 then there is a relative minimum at
(c, f(c)).

3. If f ′′(c) = 0, we make no conclusion.

Exercise 2. Use the analysis done previously to find the relative extrema
for f(x) = x

x2+2
using the second derivative test.

Stewart: Section 4.3: 1 - 37 odd.
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Solutions to Exercises

Exercise 1.

Find the largest intervals of monotonicity for f(x) = x
x2+2

.

First we need to compute and simplify f ′(x). We have

f ′(x) =
(x2 + 2)(1)− (x)(2x)

(x2 + 2)2
Quotient Rule

=
2− x2

(x2 + 2)2
Simplifying

Note that the numerator of f ′(x) is zero when x = ±
√

2, and the de-
nominator is never zero. Thus, f ′(x) is either strictly positive or strictly
negative on the intervals (−∞,−

√
2), (−

√
2,
√

2), and (
√

2,∞). Using
test values, we see that f ′(x) is positive on (−

√
2,
√

2) and negative on the
other two intervals. Thus f(x) is increasing on (−

√
2,
√

2) and decreasing
on (−∞,−

√
2) and on (

√
2,∞). Exercise 1
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Exercise 2.

Use the analysis done previously to find the relative extrema for f(x) =
x

x2+2
.

We already found that there were stationary points at x = ±
√

2, and
that f(x) is increasing on (−

√
2,
√

2) and decreasing on (−∞,−
√

2) and
on (

√
2,∞). Using the first derivative test, we know see that there is a

local maximum at x =
√

2 and a local minimum at x = −
√

2. The local
maximum value is

√
2

4
while the local minimum value is −

√
2

4
. Exercise 2
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Exercise 1.

Continue studying f(x) = x
x2+2

by analyzing its concavity.

Recall that f ′(x) = 2−x2

(x2+2)2
. So

f ′′(x) =
(x2 + 2)2(−2x)− (2− x2)(2)(x2 + 2)(2x)

(x2 + 2)4
Quotient Rule

=
(x2 + 2)((x2 + 2)(−2x)− (4x)(2− x2))

(x2 + 2)4
Factoring the Numerator

=
(x2 + 2)((−2x3 +−4x)− (8x− 4x3))

(x2 + 2)4
Distributing

=
(−2x3 +−4x)− (8x− 4x3)

(x2 + 2)3
Cancelling Factors

=
(2x3 − 12x)

(x2 + 2)3
Combining Like Terms

=
(2x)(x2 − 6)

(x2 + 2)3
Factoring the Numerator

Now an analysis of this second derivative for places where the sign might
change shows that x = 0 and x = ±

√
6 are possibilites, since that is where

the numerator (and thus f ′′(x)) is zero. Also note that there are no places
where the denominator is zero. The potential intervals of concavity are
thus (−∞,−

√
6), (−

√
6, 0), (0,

√
6), and (

√
6,∞). Using test values we
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see that the second derivative is negative on (−∞,−
√

6) and on (0,
√

6),
and is positive on (−

√
6, 0) and on (

√
6,∞). Thus f(x) is concave down on

(−∞,−
√

6) and on (0,
√

6), and is concave up on (−
√

6, 0) and on (
√

6,∞).

There are points of inflection at (0, 0), (−
√

6, −
√

6
8

), and (
√

6,
√

6
8

).
Exercise 1
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Exercise 2.

Use the analysis done previously to find the relative extrema for f(x) =
x

x2+2
.

We already found that there were stationary points at x = ±
√

2, and

we found f ′′(x) = (2x)(x2−6)
(x2+2)3

. Since f ′′(−
√

2) = −2
√

2(−4)
43 > 0 there must be

a relative minimum at x = −
√

2. Since f ′′(
√

2) = 2
√

2(−4)
43 < 0, there must

be a relative maximum at x =
√

2. Note that this coincides with what we
obtained using the first derivative test. Exercise 2
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