
Examples 8.3 – Rolle’s Theorem and the Mean Value Theorem 

 

1. Show that xxxf 
2
1)(  satisfies the hypothesis of Rolle’s Theorem on [0, 4], and find all 

values of c in (0, 4) that satisfy the conclusion of the theorem. 
 

Solution:  Based on out previous work, f is continuous on its domain, which includes [0, 4], 

and differentiable on (0, 4).  In addition, 0)4()0(  ff  so the hypothesis is satisfied.  Now 

we want to find all values of c in (0, 4) such that 0)(  cf .  Since
x

xf
2

1
2
1)(  , we have

0)(
2

1
2
1 

c
cf .  It follows that  

1

 1

 
2

1
2
1







c

c

c

 

 

Therefore, c = 1 is the only value in (0, 4) that satisfies the conclusion of the theorem. 

 

2. Show that
225)( xxf  satisfies the hypothesis of the Mean Value Theorem on [–5, 3], 

and find all values of c in (–5, 3) that satisfy the conclusion of the theorem. 
 

Solution:  Note that the domain of
225)( xxf  is [–5, 5].  Based on our previous work, 

we already know that f is continuous on [–5, 3] and differentiable on in (–5, 3).  Now we 

must find all values of c in (–5, 3) such that
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Squaring an equation and then applying a square root may introduce extraneous solutions.  

Note that c must be negative if it is to satisfy the equation  
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is the only value that satisfies the conclusion of the Mean Value Theorem in (–5, 3). 

 

 


