Lecture 13: Examples of Extreme Value Problems

13.1 Example: Continuous function on a closed interval

Example Suppose a farmer wishes to enclose a rectangular field using 1000 yards of fencing in such a way that the area of the field is maximized. Let x and y be the dimensions of the field and let A be the area of the field. Then

 $A = xy$.

Moreover,

$$
1000 = 2x + 2y,
$$

so

 $y = 500 - x.$

Hence

$$
A = x(500 - x) = 500x - x^2.
$$

We want to find the maximum value of A on the interval $[0, 500]$. Now

$$
\frac{dA}{dx} = 500 - 2x,
$$

 dA $\frac{d}{dx} = 0$

so

when

Evaluating, we have

$$
A\big|_{x=0} = 0,
$$

\n
$$
A\big|_{x=250} = (250)(250) = 62,500,
$$

\n
$$
A\big|_{x=500} = 0.
$$

 $x = 250.$

So A has a maximum value of 62,500 square yards when $x = 250$ yards and $y = 500-250 =$ 250 yards.

Example We will find the area of the largest rectangle that can be inscribed in a semicircle of radius r . That is, consider rectangles inscribed in the region bounded by the x-axis and the graph of $y = \sqrt{r^2 - x^2}$. Let A be the area of a rectangle inscribed in this region with its lower left-hand corner at the point $(x, 0)$ and its upper left-hand corner at (x, y) on the graph of $y = \sqrt{r^2 - x^2}$. Then

$$
A=2xy.
$$

$$
13-1
$$

Now $y =$ $\sqrt{r^2-x^2}$, so we have

$$
A = 2x\sqrt{r^2 - x^2}.
$$

We want to find the maximum value of A on the interval $[0, r]$. Now

$$
\frac{dA}{dx} = -\frac{2x^2}{\sqrt{r^2 - x^2}} + 2\sqrt{r^2 - x^2},
$$

so

$$
\frac{dA}{dx} = 0
$$

when

$$
2\sqrt{r^2 - x^2} = \frac{2x^2}{\sqrt{r^2 - x^2}},
$$

that is, when

$$
r^2 - x^2 = x^2.
$$

 $x^2 = \frac{r^2}{2}$ 2 ,

> $\frac{r}{\sqrt{r}}$ 2 .

 $x =$

Hence

so

Now

$$
A\Big|_{x=0} = 0,
$$

$$
A\Big|_{x=\frac{r}{\sqrt{2}}} = \frac{2r}{\sqrt{2}}\sqrt{r^2 - \frac{r^2}{2}} = r^2,
$$

and

$$
A\big|_{x=r} = 0.
$$

Hence A has a maximum value of r^2 when $x = \frac{r}{\sqrt{2}}$. Note that for this value of x, we have

$$
y = \sqrt{r^2 - \frac{r^2}{2}} = \frac{r}{\sqrt{2}}.
$$

13.2 Open intervals

The following case arises frequently when considering the extreme values of a continuous function on an open interval. Suppose f and f' are continuous on an open interval (a, b) and c is the only critical number of f in (a, b) . Then (1) if f has a local minimum at c, then the absolute minimum of f occurs at c, and (2) if f has a local maximum at c, then the absolute maximum of f occurs at c .

Example Suppose a company wishes to manufacture a can in the shape of a right circular cylinder which will hold a volume V but have minimal surface area. Let h be the height of the can, r the radius of the base of the can, and S the surface area of the can. Then

$$
S = 2\pi rh + 2\pi r^2.
$$

Moreover,

so

Hence

$$
S = 2\pi r \left(\frac{V}{\pi r^2}\right) + 2\pi r^2 = \frac{2V}{r} + 2\pi r^2.
$$

We want to find the minimum value of S on the interval $(0, \infty)$. Now

$$
\frac{dS}{dr} = 4\pi r - \frac{2V}{r^2},
$$

so

$$
\frac{dS}{dr} = 0
$$

when

$$
r = \sqrt[3]{\frac{V}{2\pi}}.
$$

Now

$$
\frac{d^2S}{dr^2} = 4\pi + \frac{4V}{r^3},
$$

so

$$
\left. \frac{d^2S}{dr^2} \right|_{r = \sqrt[3]{\frac{V}{2\pi}}} = 4\pi + 8\pi = 12\pi > 0.
$$

Thus S has a local minimum at $r = \sqrt[3]{\frac{V}{2a}}$ $\frac{V}{2\pi}$ and so, since this is the only critical number in $(0, \infty)$, S has an absolute minimum at $r = \sqrt[3]{\frac{V}{2a}}$ $\overline{\frac{V}{2\pi}}$. Finally, when $r = \sqrt[3]{\frac{V}{2\pi}}$ $\frac{V}{2\pi}$, we have

$$
h = \frac{V}{\pi \left(\frac{V}{2\pi}\right)^{\frac{2}{3}}} = \frac{V^{\frac{1}{3}} 2^{\frac{2}{3}}}{\pi^{\frac{1}{3}}} = 2 \sqrt[3]{\frac{V}{2\pi}} = 2r.
$$

Example Suppose we wish to find the point on the line $y = 2x+1$ which is closest to the point $(2, 1)$. That is, we wish to minimize the distance between $(2, 1)$ and the points on the line, or, what is equivalent, minimize the square of the distance between $(2, 1)$ and points

V

 $rac{r}{\pi r^2}$.

 $h =$

 $V = \pi r^2 h,$

on the line. Now the square of the distance between $(2, 1)$ and a point $(x, y) = (x, 2x + 1)$ which lies on $y = 2x + 1$ is given by

$$
f(x) = (x - 2)^{2} + ((2x + 1) - 1)^{2} = x^{2} - 4x + 4 + 4x^{2} = 5x^{2} - 4x + 4.
$$

Hence we want to find the minimum value of f on the interval $(-\infty, \infty)$. Now

$$
f'(x) = 10x - 4,
$$

so $f'(x) = 0$ when $x = \frac{2}{5}$ $\frac{2}{5}$. Since $f''(x) = 10$, $f''(\frac{2}{5})$ $\frac{2}{5}$) = 10 > 0, and f has a local minimum at $x=\frac{2}{5}$ $\frac{2}{5}$. Since f has only one critical number in $(-\infty,\infty)$, f has, in fact, an absolute minimum at $x=\frac{2}{5}$ $\frac{2}{5}$. Now when $x=\frac{2}{5}$ $\frac{2}{5}$,

$$
y = 2(\frac{2}{5}) + 1 = \frac{9}{5},
$$

so the point $(\frac{2}{5}, \frac{9}{5})$ $\frac{9}{5}$) is the point on the line $y = 2x + 1$ which is closest to $(2, 1)$.