22 Derivative of inverse function

22.1 Statement

Any time we have a function f, it makes sense to form is inverse function f^{-1} (although this often requires a reduction in the domain of f in order to make it injective). If we know the derivative of f, then we can find the derivative of f^{-1} as follows:

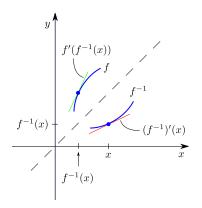
DERIVATIVE OF INVERSE FUNCTION. If f is a function with inverse function f^{-1} , then

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

This formula is an immediate consequence of the definition of an inverse function and the chain rule:

$$f(f^{-1}(x)) = x$$
$$\frac{d}{dx} \left[f(f^{-1}(x)) \right] = \frac{d}{dx} \left[x \right]$$
$$f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$$
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

The figure below shows that the formula agrees with the fact that the graph of f^{-1} is the reflection across the 45° line y = x of the graph of f. Such a reflection interchanges the coordinates of a point (i.e., (x, y) reflects to (y, x)), so the reflection of a line has slope the reciprocal of the slope of the original line. Thus, the slope of the line tangent to the graph of f^{-1} at the point $(x, f^{-1}(x))$ (red line) is the reciprocal of the slope of the tangent to the graph of f at the point $(f^{-1}(x), x)$ (green line), and this is also what the formula says.



22.1.1 Example The inverse of the function $f(x) = x^2$ with reduced domain $[0, \infty)$ is $f^{-1}(x) = \sqrt{x}$. Use the formula given above to find the derivative of f^{-1} .

Solution We have f'(x) = 2x, so that $f'(f^{-1}(x)) = 2\sqrt{x}$. Using the formula above, we have

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{2\sqrt{x}}.$$

(We can check by using the power rule:

$$(f^{-1})'(x) = \frac{d}{dx} \left[\sqrt{x}\right] = \frac{d}{dx} \left[x^{1/2}\right] = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

in agreement with what we just found.)

22.2 Derivative of logarithm function

The logarithm function $\log_a x$ is the inverse of the exponential function a^x . Therefore, we can use the formula from the previous section to obtain its derivative.

DERIVATIVE OF LOGARITHM FUNCTION. For any positive real number a, $\frac{d}{dx} \left[\log_a x \right] = \frac{1}{x \ln a}.$ In particular, $\frac{d}{dx} \left[\ln x \right] = \frac{1}{x}.$

The second formula follows from the first since $\ln e = 1$. We verify the first formula. The function $f(x) = a^x$ has inverse function $f^{-1}(x) = \log_a x$. We

have $f'(x) = a^x \ln a$, so $f'(f^{-1}(x)) = a^{\log_a x} \ln a = x \ln a$. Using the formula for the derivative of an inverse function, we get

$$\frac{d}{dx}\left[\log_a x\right] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{x\ln a},$$

as claimed.

22.2.1 Example Find the derivative of each of the following functions:

(a) $f(x) = 4 \log_2 x + 5x^3$

(b)
$$f(x) = \ln(\sin x)$$

Solution

(a) Using the new rule, we have

$$f'(x) = \frac{d}{dx} \left[4 \log_2 x + 5x^3 \right]$$

= $4 \frac{d}{dx} \left[\log_2 x \right] + \frac{d}{dx} \left[5x^3 \right]$
= $4 \left(\frac{1}{x \ln 2} \right) + 15x^2$
= $\frac{4}{x \ln 2} + 15x^2$.

(b) Here, we require the chain rule (with outside function the natural logarithm):

$$f'(x) = \frac{d}{dx} \left[\ln(\sin x) \right] = \frac{1}{\sin x} \cdot \cos x = \cot x.$$

22.3 Derivatives of inverse sine and inverse cosine functions

The formula for the derivative of an inverse function can be used to obtain the following derivative formulas for $\sin^{-1} x$ and $\cos^{-1} x$:

DERIVATIVES OF INVERSE SINE AND INVERSE COSINE FUNC-TIONS.

(i)
$$\frac{d}{dx} \left[\sin^{-1} x \right] = \frac{1}{\sqrt{1 - x^2}},$$

(ii) $\frac{d}{dx} \left[\cos^{-1} x \right] = -\frac{1}{\sqrt{1 - x^2}}$

We verify the first formula. The function $f(x) = \sin x$ with domain reduced to $[-\pi/2, \pi/2]$ has inverse function $f^{-1}(x) = \sin^{-1} x$. We have $f'(x) = \cos x$, so that $f'(f^{-1}(x)) = \cos(\sin^{-1}(x))$. The formula for the derivative of an inverse function now gives

$$\frac{d}{dx}\left[\sin^{-1}x\right] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos\left(\sin^{-1}(x)\right)}$$

This last expression can be simplified by using the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$. Put $\theta = \sin^{-1}(x)$ and note that $\theta \in [-\pi/2, \pi/2]$. Then,

$$\cos\left(\sin^{-1}(x)\right) = \cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - x^2},$$

where we have used that $\cos \theta \ge 0$ in choosing the positive square root when we solved the trigonometric identity for $\cos \theta$. Putting this final expression into the earlier equation, we get

$$\frac{d}{dx}\left[\sin^{-1}x\right] = \frac{1}{\sqrt{1-x^2}},$$

as claimed.

22.3.1 Example Find the derivative of each of the following functions:

(a)
$$f(x) = 4e^x \sin^{-1} x$$
,
(b) $f(x) = \cos^{-1} (x^3 + x)$.

Solution

(a) The product rule is applied first:

$$f'(x) = \frac{d}{dx} \left[4e^x \sin^{-1} x \right]$$

= $\frac{d}{dx} \left[4e^x \right] \sin^{-1} x + 4e^x \frac{d}{dx} \left[\sin^{-1} x \right]$
= $(4e^x) \sin^{-1} x + 4e^x \left(\frac{1}{\sqrt{1 - x^2}} \right)$
= $4e^x \sin^{-1} x + \frac{4e^x}{\sqrt{1 - x^2}}.$

(b) The chain rule is used with outside function the arc cosine function:

$$f'(x) = \frac{d}{dx} \left[\cos^{-1} \left(x^3 + x \right) \right]$$
$$= -\frac{1}{\sqrt{1 - (x^3 + x)^2}} \cdot (3x^2 + 1)$$
$$= -\frac{3x^2 + 1}{\sqrt{1 - (x^3 + x)^2}}.$$

-	_	_	
			l
L	_	_	J

22-Exercises

22–1 Find the derivatives of each of the following functions:

- (a) $f(x) = 3\log_3 x 4\ln x$,
- (b) $f(t) = \ln(1 + 3e^{2t}).$
- 22-2 Find the derivative of the function $f(x) = \ln(\ln(\ln x))$.