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-verse Trigonometric Functions and Their Derivatives

You can see from Figure 1 that the sine function y = sin x is
not one-to-one (use the Horizontal Line Test).

Y ‘r
y=sinx

N N /
7 e .

Figure 1

But the function f(x) = sin x, —n/2 < x < /2, is one-to-one
(see Figure 2). yA
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-verse Trigonometric Functions and Their Derivatives

The inverse function of this restricted sine function f exists
and is denoted by sin~'or arcsin. It is called the inverse sine
function or the arcsine function.

Since the definition of an inverse function says that
Fix)=y <= fy)=x

we have

o . T T
sin" x=y <= siny=x and —ESyS—Q—

Thus, if =1 < x <1, sin"x is the number between —t/2 and r/2

whose sine is x.
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‘xample 1

Evaluate (a) sin~'(1) and (b) tan(arcsin %).

Solution:
(a) We have

because sin(n/0) = % and /6 lies between —rt/2 and m/2.



BB 2mple 1 — Solution

(b) Let 6= arcsin%, SO sin 6’=%.

Then we can draw a right triangle with angle #@as in Figure 3
and deduce from the Pythagorean Theorem that the third

side has length VO — 1 =22,

22

Figure 3

This enables us to read from the triangle that

. 1
tan(arcsin ) = tan 0 = EW3



-verse Trigonometric Functions and Their Derivatives

The cancellation equations for inverse functions become, in
this case,

o e T T
sin”'(sin x) = x fOI‘—?:‘EJCSE

sin(sin"'x) =x for—-1=s=x<1




-verse Trigonometric Functions and Their Derivatives

The inverse sine function, sin~', has domain [-1, 1] and
range [—n/2, ©/2], and its graph, shown in Figure 4, is
obtained from that of the restricted sine function (Figure 2)
by reflection about the line y = x.

We know that the sine function fis continuous, so the

inverse sine function is also continuous.
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-verse Trigonometric Functions and Their Derivatives

We can use implicit differentiation to find the derivative of
the inverse sine function, assuming that it is differentiable.
(The differentiability is certainly plausible from its graph in
Figure 4.)

Let y = sin~'x. Then sin y = xand —n/2 < y < m/2.

Differentiating sin y = x implicitly with respect to x, we obtain

d d I
cosyd—y=1 and d_ic)zcosy
X




-verse Trigonometric Functions and Their Derivatives

Now cos y > 0 since —nt/2 < y < 7/2, so

cosy = /1 — sin?y = /1 — x2

Therefore — = = '
dx cosy 41— x?
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-verse Trigonometric Functions and Their Derivatives

The inverse cosine function is handled similarly. The

restricted cosine function f(x) =cos x, 0 < x<m, is
one-to-one (see Figure 6) and so it has an inverse function

denoted by cos~' or arccos.

cos'x=y <> cosy=x and O0<ys<gq
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Figure6 y=cosx,0<x<mw
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-verse Trigonometric Functions and Their Derivatives

The inverse cosine function, cos-1, has domain [-1, 1] and
range [0, ] and is a continuous

function whose graph is |
shown in Figure 7. \

2 \
T

-1 0 1

Y

Figure 7 y = cos~'x = arccos x

Its derivative is given by

2 — (cos ) = ——p—
dx(cos X) —




-verse Trigonometric Functions and Their Derivatives

The tangent function can be made one-to-one by restricting

it to the interval (—n/2, ©/2).

Thus the inverse tangent function
is defined as the inverse of the
function f(x) = tan x, —n/2 < x < /2,
as shown in Figure 8.

It is denoted by tan—" or arctan.
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Figure 8

y = tan x, —% <x<

tan"'x =y <= tany=x and
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-verse Trigonometric Functions and Their Derivatives

The inverse tangent function, tan—' = arctan, has domain[R
and range (—mn/2, ©/2).

Its graph is shown in Figure 10.

Figure 10  y = tan-'x = arctan x

14



-verse Trigonometric Functions and Their Derivatives

We know that

lim tanx =« and lim tanx = —o©

x—(m/2)” x—=>—(7/2)*

and so the lines x = £rt/2 are vertical asymptotes of the
graph of tan.

Since the graph of tan—! is obtained by reflecting the graph
of the restricted tangent function about the line y = x, it
follows that the lines y = n/2 and y = —n/2 are horizontal
asymptotes of the graph of tan-!.

15



-verse Trigonometric Functions and Their Derivatives

This fact is expressed by the following limits:

T , - T
3 lim tan 'x = 5 lim tan 'x = ——

X—oe A== 00 2

The formula for the derivative of the arctangent function is
derived in a way that is similar to the method we used for
arcsine.

16



-verse Trigonometric Functions and Their Derivatives

If y = tan~"x, then tan y = x. Differentiating this latter
equation implicitly with respect to x, we have

dy

,
secy—— = |
T odx
dy 1 1 1
and so = == —= 3
dx  secy I + tany 1 + x
d . 1
: dx tan ) = 1 + x?

17
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‘erivatives of Logarithmic Functions

In this section we use implicit differentiation to find the
derivatives of the logarithmic functions y = log, x and, in
particular, the natural logarithmic function y = In x.

d 1
1 . (log, x) =

xIna




‘erivatives of Logarithmic Functions

If we put a = e in Formula 1, then the factor In a on the right
side becomes In e = 1 and we get the formula for the
derivative of the natural logarithmic function log, x = In x:

d |
2 — (1 WO
dx(nx) X

By comparing Formulas 1 and 2, we see one of the main
reasons that natural logarithms (logarithms with base e) are
used in calculus: The differentiation formula is simplest

when a = e because In e = 1.



‘xample 1

Differentiate y = In (x3 + 1).

Solution:
To use the Chain Rule, we let u = x3 + 1.

Theny=1Inu, so
dy _ dy du
dx du dx
1 du
uodx

1 )
R (3%°)
3x°

x>+ 1




‘erivatives of Logarithmic Functions

In general, if we combine Formula 2 with the Chain Rule as
in Example 1, we get

d 1 du d
e 1 T e — — —
o (In u) s or I [In g(x)]

g'(x)
g(x)




‘xample 6

Find f'(x) if f(x) = In | x]|.

Solution:

Since
() — In x if x>0
Fx In(—x) if x<O

it follows that

(

|
— if x>0
b

F(x) =4

1 1
—(-)== if x<0
—X X

\

Thus f(x) = 1/x for all x # 0.



‘erivatives of Logarithmic Functions

The result of Example 6 is worth remembering:

d 1
_..._1 —_— —
: dx n}x[ X




Logarithmic Differentiation



-ogarithmic Differentiation

The calculation of derivatives of complicated functions
involving products, quotients, or powers can often be
simplified by taking logarithms.

The method used in the following example is called
logarithmic differentiation.

10



-xam ple 7 — Logarithmic Differentiation

xx + 1
Differentiate vy = Gx + 2

Solution:
We take logarithms of both sides of the equation and use

the Laws of Logarithms to simplify:

ny=2Inx+3In (2+1)-5In (3x + 2)

Differentiating implicitly with respect to x gives

1dy 3 1 1 2x 3

—

yde 4 x 2 x241 ° 3x+2

11



‘xam ple 7 — Solution

Solving for dy/dx, we get

dy 3 X 15
dx “\4x x*+1 3x + 2

Because we have an explicit expression for y, we can
substitute and write

cont’d

..l.__ —
dx B3x+2) \dx x4+ 1 3x + 2

_c_il_x3/4\/x2+1(3 5 15 )
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-ogarithmic Differentiation

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y’.

If f(x) < O for some values of x, then In f(x) is not defined, but

we can write |y| = |f(x)| and use Equation 4. We illustrate
this procedure by proving the general version of the Power

Rule.

The Power Rule If 7 is any real number and f(x) = x", then

f'(x) = nx""

13



-ogarithmic Differentiation

In general there are four cases for exponents and bases:

1. LS (@) =0 (a and b are constants)

dx

2. L P = bIAOI-F(x)
dx

3. L [ao09] = a9w(in a)g'(x)
dx

4. To find (d/dx)[f(x)]9™, logarithmic differentiation can be
used.

14
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-ates of Change in the Natural and Social Sciences

We know that if y = f(x), then the derivative dy/dx can be
interpreted as the rate of change of y with respect to x.

If x changes from x, to x,, then the change in x is

and the corresponding change in y is

Ay = f(x;) — f(x4)



-ates of Change in the Natural and Social Sciences

The difference quotient

Ay _ flx) — flxn)

AX X2 — Xq

is the average rate of change
of y with respect to x over the
interval [x,, x,] and can be
interpreted as the slope of the
secant line PQ in Figure 1.

Y4

Figure 1

meq = average rate of change
m = f’(x,) = instantaneous rate
of change



-ates of Change in the Natural and Social Sciences

Its limit as Ax — O is the derivative f'(x,), which can
therefore be interpreted as the instantaneous rate of

change of y with respect to x or the slope of the tangent
line at P(x,, f(x,)).

Using Leibniz notation, we write the process in the form

d A
L — jim
dx  Ax—0 Ax



Physics



-’hysics

If s = f(t) is the position function of a particle that is moving
In a straight line, then As/At represents the average velocity
over a time period At, and v = ds/dt represents the
instantaneous velocity (the rate of change of displacement

with respect to time).

The instantaneous rate of change of velocity with respect to
time is acceleration: a(t) = v'(t) = s”(t).

Now that we know the differentiation formulas, we are able
to solve problems involving the motion of objects more

easily.



.xample 1 — Analyzing the Motion of a Particle

The position of a particle is given by the equation
s = f(t) = t3 — 62 + 9t

where t is measured in seconds and s in meters.

(a) Find the velocity at time t.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the
positive direction)?

(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the
first five seconds.

(g) Find the acceleration at time t and after 4 s.



-xample 1 — Analyzing the Motion of a Particle

(h) Graph the position, velocity, and acceleration functions
forO0< t< 5.

(i) When is the particle speeding up? When is it slowing
down?

Solution:

(a) The velocity function is the derivative of the position
function.

s=f(f) = 13— 62+ 9t

)= =32_12t+9
dt

ont'd



‘xample 1 — Solution

(b) The velocity after 2 s means the instantaneous velocity
when t = 2, that is,

cont’d

v(2) = Z_S =3(2)>-12(2) + 9

=2

=-3m/s
The velocity after 4 s is
v(4) = 3(4)°-12(4) + 9

=9 m/s
10



!xample 1 — Solution

(c) The particle is at rest when v(f) = 0, that is,
3t2 — 12t + 9 = 3(t? — 4t + 3)
=3(t—1)(t- 3)
=0

and this is true when t=1 or t = 3.

Thus the particle is at rest after 1 s and after 3 s.

cont'd

11



‘xample 1 — Solution

(d) The particle moves in the positive direction when v(t) > 0,
that is,

cont’d

32— 12t +9 = 3(t—1)(t—3) > 0

This inequality is true when both factors are positive
(t > 3) or when both factors are negative (f < 1).

Thus the particle moves in the positive direction in the
time intervals t<1and t > 3.

It moves backward (in the negative direction) when

1<t<3.
12



‘xample 1 — Solution

(e) Using the information from part (d) we make a schematic

cont’d

sketch in Figure 2 of the motion of the particle back and
forth along a line (the s-axis).

[
A)

Il
M\ o w
A

V
A

4

Y

4

L =~

H I &@

o o
!-'!-F

oIl e
Ly

Figure 2

13



‘xample 1 — Solution i

(f) Because of what we learned in parts (d) and (e), we need
to calculate the distances traveled during the time
intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is
|f(1)—f(0)|=]4—-0|=4m

From t =1 to t = 3 the distance traveled is
|f(3)—f(1)|]=]0—-4|=4m

From t = 3 to t = 5 the distance traveled is
|f(5)—f(3)[=]120-0|=20m

The total distance is 4 + 4 + 20 = 28 m.
14



!xample 1 — Solution

(h) Figure 3 shows the graphs of s, v, and a.

cont’d

Figure 3

16



‘xample 1 — Solution

(9) The acceleration is the derivative of the velocity function:

cont'd

d?s
a(t) = —
(f) di®

dv

dr

= 6t — 12
a(4) = 6(4) — 12

=12 m/s?

15



‘xample 1 — Solution .

(i) The particle speeds up when the velocity is positive and
increasing (v and a are both positive) and also when the
velocity is negative and decreasing (v and a are both
negative).

In other words, the particle speeds up when the velocity

and acceleration have the same sign. (The particle is
pushed in the same direction it is moving.)

From Figure 3 we see that this happens when 1 <f< 2
and when t > 3.

17



‘xample 1 — Solution o

The particle slows down when v and a have opposite
signs, that is, when 0 <f{< 1 and when 2 <t < 3.

Figure 4 summarizes the motion of the particle.
|

. - : >
0 /4/ T
e 5 o 18
forward backward forward
slows spe-'eds slows speeds
down up down up

Figure 4
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Biology
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-xample 6 — Rate of Growth of a Population

Let n = f(t) be the number of individuals in an animal or plant
population at time .

The change in the population size between the times t = t,
and t =, is An = {(t,) — (t;), and so the average rate of

growth during the time period ¢, <t <, is

average rate of growth = i_’; _ .t ("j) ‘{ (r)
2 =

The instantaneous rate of growth is obtained from this
average rate of growth by letting the time period At

approach 0O:
bP An dan

h rate = li =
growth rate lim —= >

33



-xample 6 — Rate of Growth of a Population

cont’d

Strictly speaking, this is not quite accurate because the
actual graph of a population function n = f(t) would be a step
function that is discontinuous whenever a birth or death
occurs and therefore not differentiable.

4
However, for a large animal e

or plant population, we can
replace the graph by a smooth
approximating curve as in
Figure 7.

Figure 7

A smooth curve approximating
a growth function

34



-xample 6 — Rate of Growth of a Population

cont’d

To be more specific, consider a population of bacteria in a
homogeneous nutrient medium.

Suppose that by sampling the population at certain intervals
it is determined that the population doubles every hour.

If the initial population is n,and the time t is measured in

hours, then
f(1) = 2f(0) = 2n,
f(2) = 2f(1) = 22n,
f(3) = 2f(2) = 2°n,
In general,

f(t) = 2tn,

35



-xample 6 — Rate of Growth of a Population

cont’d

The population function is n, = ny2t.

We have shown that
d
. (@) =a'lna

So the rate of growth of the bacteria population at time t is

d
cT? = — (no2")

d
dt

= 1702 In 2

36



-xample 6 — Rate of Growth of a Population

cont'd

For example, suppose that we start with an initial population
of n, = 100 bacteria.

Then the rate of growth after 4 hours is

dn ;
— = 100-2"In2
df r=4 |
= 1600 In 2
~ 1109

This means that, after 4 hours, the bacteria population is
growing at a rate of about 1109 bacteria per hour.

37



Economics
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!xample 8 — Marginal Cost

Suppose C(x) is the total cost that a company incurs in

producing x units of a certain commodity.

The function C is called a cost function. If the number of
items produced is increased from x, to x,, then the
additional cost is AC = C(x,) — C(x4), and the average rate of
change of the cost is

AC _ C(x2) — C(x,) C(x; + Ax) — C(xy)

Ax X2 — X Ax

44



‘xample 8 — Marginal Cost

The limit of this quantity as Ax — 0, that is, the instantaneous
rate of change of cost with respect to the number of items
produced, is called the marginal cost by economists:

AC dC

marginal cost = Jim == ==

cont’d

[Since x often takes on only integer values, it may not make
literal sense to let Ax approach 0, but we can always replace

C(x) by a smooth approximating function as in Example 6.]

Taking Ax =1 and n large (so that Ax is small compared to n),
we have
C’'(n)=C(n+1)-C(n)
45



‘xample 8 — Marginal Cost e

Thus the marginal cost of producing n units is approximately
equal to the cost of producing one more unit, the
(n + 1)st unit.

It is often appropriate to represent a total cost function by a
polynomial

C(x) = a+ bx + cx? + dx3

where a represents the overhead cost (rent, heat,
maintenance) and the other terms represent the cost of raw
materials, labor, and so on. (The cost of raw materials may
be proportional to x, but labor costs might depend partly on
higher powers of x because of overtime costs and

inefficiencies involved in large-scale operations.)
46



‘xample 8 — Marginal Cost

For instance, suppose a company has estimated that the
cost (in dollars) of producing x items is

cont’'d

C(x) = 10,000 + 5x + 0.01x2

Then the marginal cost function is
C’(x) =5+ 0.02x
The marginal cost at the production level of 500 items is
C’(500) = 5 + 0.02(500)
= $15/item

47



‘xam ple 8 — Marginal Cost e

This gives the rate at which costs are increasing with
respect to the production level when x = 500 and predicts
the cost of the 501st item.

The actual cost of producing the 501st item is
C(501) — C(500) = [10,000 + 5(501) +0.01(501)7]
—[10,000 + 5(500) +0.01(500)7]

= $15.01

Notice that C’(500) = C(501) — C(500).
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