
CHAPTER 25

Derivatives of Inverse Trig Functions

Our goal is simple, and the answers will come quickly. We will derive six
new derivative formulas for the six inverse trigonometric functions:
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These formulas will flow from the inverse rule from Chapter 24 (page 278):
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25.1 Derivatives of Inverse Sine and Cosine
Applying the inverse rule (25.1) with f (x)= sin(x) yields
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We are almost there. We just have to simplify the
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in the denominator. To do this recall
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We reviewed sin

°1

(x) In Section 6.1 and presented its graph on page 101.
Figure 25.1 repeats the graph, along with the derivative from Rule 20.
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Figure 25.1. The function sin

°1

(x) and its derivative. The derivativeis
always positive, reflecting the fact that the tangents to sin

°1

(x) have positive
slope. The derivative has vertical asymptotes at x =±1, as the tangents to
sin

°1

(x) become increasingly steep as x approaches ±1.

Now consider cos

°1

(x). The tangents to its graph (Figure 25.2 below)
have negative slope, and the geometry suggests that its derivative is negative

the derivative of sin

°1

(x). Indeed this turns out to be exactly the case. This
chapter’s Exercise 1 asks you to prove our next rule:
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Figure 25.2. The function cos

°1

(x) and its derivative.
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25.2 Derivatives of Inverse Tangent and Cotangent
Now let’s find the derivative of tan

°1

(x). Putting f (x)= tan(x) into the inverse
rule (25.1), we have f
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(x) and f
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The expression sec

°
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in the denominator is the

length of the hypotenuse of the triangle to the right.
(See example 6.3 in Chapter 6, page 114.) By the
Pythagorean theorem, the length is sec
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We discussed tan

°1

(x) in Chapter 6, and its graph is in Figure 6.3. Below
Figure 25.3 repeats the graph, along with the derivative 1

x

2+1

.
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Figure 25.3. The function tan
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(x) and its derivative 1

1+x

2

. Note lim

x!1
1

1+x

2

= 0

and lim

x!°1
1

1+x

2

= 0, reflecting the fact that the tangent lines to y = tan
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(x)

become closer and closer to horizontal as x !±1. The derivative bumps up
to 1 at x = 0, where the tangent to y= tan

°1

(x) is steepest, with slope 1

Exercise 3 below asks you to mirror the above arguments to deduce:
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25.3 Derivatives of Inverse Secant and Cosecant
We reviewed sec

°1

(x) in Section 6.3. For its derivative, put f (x)= sec(x) into
the inverse rule (25.1), with f
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(x) and f
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In Example 6.5 we showed that tan
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But if x is negative, then °x is positive, and the above consolidates to
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This graph of sec
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(x) and its derivative. The domain of
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This chapter’s Exercise 2 asks you to use reasoning similar to the above
to deduce our final rule.

Rule 25 d

dx

h
csc

°1

(x)

i
= °1

|x|
p

x

2 °1

Each of our new rules has a chain rule generalization. For example,
Rule 25 generalizes as
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Here is a summary of this Chapter’s new rules, along with their chain rule
generalizations.
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25.4 Summary of Derivative Rules
We have reached the end of our derivative rules. In summary, we have
the following rules for specific functions. The corresponding chain rule
generalizations are shown to the right.
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In addition we have the following general rules for the derivatives of
combinations of functions.
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We used this last rule, the inverse rule, to find the derivatives of ln(x)

and the inverse trig functions. After it has served these purposes it is mostly
retired for the remainder of Calculus I, except for the stray exercise or quiz
or test question.

This looks like a lot of rules to remember, and it is. But through practice
and usage you will reach the point of using them automatically, with hardly
a thought. Be sure to get enough practice!

Exercises for Chapter 25
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Exercise Solutions for Chapter 25
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