AP Calc Notes: MD – 6A Derivative of Inverse Functions from Equations, Graphs and Tables

Review of inverses:

- 1. A function f will have an inverse function f^{-1} if and only if f is **one-to-one**
 - To be one-to-one, a continuous function must be either increasing or decreasing
- 2. The graph of f^{-1} is the reflection of the graph of f over the line **y** = **x**
- 3. If f is continuous, then f^{-1} is also continuous.
- 4. If f is increasing(decreasing), then f^{-1} is also increasing(decreasing).
- 5. If *f* is differentiable at x = c and $f'(c) \neq 0$, then f^{-1} is differentiable at x = f(c).

We want a formula for $(f^{-1})'$.

Geometric Approach

Note:
$$f(a) = b \rightarrow a = f^{-1}(b)$$

$$\therefore (f^{-1}(b))' = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}$$

We may substitute x for b, so

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Inverse functions have reciprocal slopes at reflected points. Analytic Approach

$$y = f'(x) \rightarrow x = f^{-1}(y) \rightarrow 1 = f'(y)y' \rightarrow y' = \frac{1}{f'(y)}$$

$$(2) \text{ Reflect the point,} \text{ find } x \text{ for } y = a$$

$$(1) \text{ To find}$$

$$(f^{-1})'(a)$$

$$(3) \text{ Find the derivative,} \text{ evaluate at } x = b$$

$$f'(b)$$

$$(4) \text{ Take the reciprocal}$$
of $f'(b)$

$$(f^{-1})'(a) = \frac{1}{f'(b)}$$

Ex: If
$$f(4) = 6$$
 and $f'(4) = \frac{2}{3}$ and $f'(6) = \frac{3}{5}$, find $(f^{-1})'(6)$

(2) Reflect the point, find x for

$$y = 6$$

 $f(4) = 6$ so $x = 4$
(1) To find
 $(f^{-1})'(6)$
(3) Find the derivative, evaluate
at $x = 4$
 $f'(4) = \frac{2}{3}$
(4) Take the reciprocal of $f'(4)$
 $(f^{-1})'(6) = \frac{1}{\frac{2}{3}} = \frac{3}{2}$

Ex: If
$$f(x) = \frac{x^3}{32} + x - 5$$
, find $(f^{-1})'(1)$.

(2) Reflect the point, find x for

$$y = 1$$
 (use calc)
 $\frac{x^3}{32} + x - 5 = 1$ so $x = 4$
(1) To find
 $(f^{-1})'(1)$
(3) Find the derivative, evaluate
at $x = 4$
 $f'(x) = \frac{3x^2}{32} + 1$
 $f'(4) = \frac{5}{2}$
(4) Take the reciprocal of $f'(4)$
 $(f^{-1})'(1) = \frac{2}{5}$

Ex: If $g(x) = x^5 + 2x - 1$, find $\frac{d}{dx}g^{-1}(2)$.

(2) Reflect the point, find x for y = 2(use calc) $x^{5} + 2x - 1 = 2$ so x = 1(1) To find $(g^{-1})'(2)$ (3) Find the derivative, evaluate at x = 1 $g'(x) = 5x^{4} + 2$ g'(1) = 7(4) Take the reciprocal of g'(1) $(g^{-1})'(2) = \frac{1}{7}$

Ex. Selected values for the functions f(x) and f'(x) are shown in the table below. Let $g(x) = f^{-1}(x)$.

x	1	2	3	4
f(x)	2	4	1	3
f'(x)	1	3	4	2

a) Find g'(3)

(2) Reflect the point, find x for $y = 3$	(1) To find
f(x) = 3 so $x = 4$	(g)'(3)
(3) Find the derivative, evaluate at $x = 4$	(4) Take the reciprocal of $f'(4)$
f'(4) = 2	() (2) 1
	$(g)^{r}(3) = \frac{1}{2}$
	_

b) Find g'(4)

(2) Reflect the point, find x for $y = 4$ f(x) = 4 so $x = 2$	(1) To find $(g)'(4)$
5 (1)	
(3) Find the derivative, evaluate at $x = 2$ f'(2) = 3	(4) Take the reciprocal of $f'(2)$ $(g)'(4) = \frac{1}{3}$

Example with a graph

If
$$h(x) = f^{-1}(x)$$
, find $h'(6)$

(2) Reflect the point, find x for $y = 6$ f(x) = 6 so $x = 3$	(1) To find $(h)'(6)$
(3) Find the derivative at $x = 3$	(4) Take the reciprocal of $f'(3)$
f'(3) = 5	$(h)'(6) = \frac{1}{5}$