DEFINITION of One-to-One Functions

A function f(x) is one-to-one on a domain D if $f(x_1) = f(x_2)$ whenever $x_1 \neq x_2$ in D

⇒ Some functions are one-to-one on their entire natural domain.

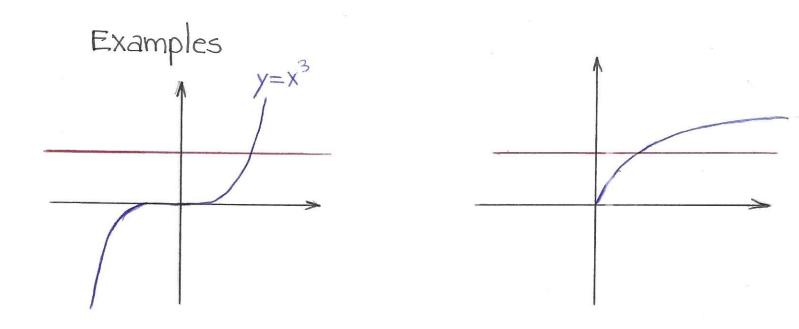
→ Other functions are not one-to-one on their entire domain.

we can restrict the function to a smaller domain. By restricting the domain, we can create a function that is one-to-one.

The original and restricted functions ARE NOT the SAME functions because they have DIFFERENT DOMAINS. However, the two functions have the same values on the smaller domain.

The graph of a one-to-one function y=f(x) can intersect a given horizontal line at MOST Once.

If the function intersects the line more than once, then it assumes the same y-value for at LEAST two different x-values and its therefore NOT one-to-one.

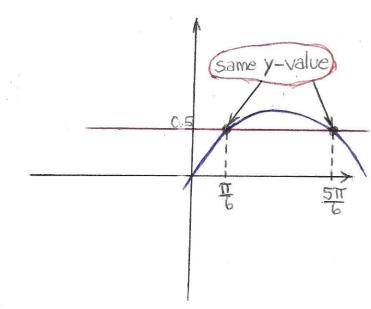


The functions above are examples of one-to-one functions.

$$f(X_1) \neq f(X_2)$$
 where $X_1 \neq X_2$



$$X_1 = -1$$
, $X_2 = 1$
 $X_1 \neq X_2$
But
 $f(X_1) = f(X_2) = 1$



$$X_1 = \frac{1}{6}$$
, $X_2 = \frac{5\pi}{6}$
 $X_1 \neq X_2$
 $f(\frac{\pi}{6}) = 0.5 = f(\frac{5\pi}{6})$
 $f(X_1) = f(X_2)$

The functions above are NOT one-to-one.

The graph meets one or more horizontal lines more than once.

Inverse Functions

* since each output of a one-to-one function comes from just one input, the effect of the function can be inverted to send each output back to the input from which it came.

DEFINITION >> Suppose that I is one-to-one function on a domain D with range R. The INVERSE FUNCTION I is defined by

$$f'(b) = a$$
 if $f(a) = b$

The domain of f' is R and the range of f' is D.

$$(f^{-1}\circ f)(x) = X$$
 where $f(x) = y$
 $(f \circ f^{-1})(y) = y$ where $f^{-1}(y) = X$

THE BIG IDEA

only a one-to-one function can have an inverse.

The reason is that if $f(x_1)=y$ and $f(x_2)=y$ for two distinct inputs x_1 and x_2 , then there is no way to assign a value to f'(y) that satisfies both

$$f^{-1}(f(x_1)) = x_1$$
 and $f^{-1}(f(x_2)) = x_2$