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An alternative way to simplify the previous expression is

d
dx

tan x
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So that
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The equality above can also be proved using the Pythagorean identity

1 + tan2 x = sec2 x

Most text books use the sec2 x formula for the derivative of tan x, but Maple
and other symbolic differentiating programs use the 1 + tan2 x formula.

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
7/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Derivative of sin
Derivative of cos Using the Chain Rule
Derivative of tan Using the Quotient Rule
Derivatives the Six Trigonometric Functions

Derivatives the Six Trigonometric Functions

Using basic differentiation rules as in the derivation of the derivative formula
for tan we can find derivative formulas for all of the other trigonometric
functions.
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Using basic differentiation rules as in the derivation of the derivative formula
for tan we can find derivative formulas for all of the other trigonometric
functions. Also, recall that when we derived the General Rule for the
Exponential Function we stated that we would give all derivative formulas in
a general form using the Chain Rule. In this form we introduce an
intermediate variable u assumed to represent some function of x. With this
assumption the derivative rules for all six basic trigonometric functions are:
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Example 46 – Differentiating with Trig Functions

Find and simplify the indicated derivative(s) of each function.

(a) Find f ′(x) and f ′′(x) for f (x) = x2 cos (3x).

(b) Find
ds
dt

for s =
cos t

sin t + cos t
.

(c) Find C′(x) for C(x) = tan
(

e
√

1+x2
)

.
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Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 46(a)

Using the Product Rule followed by the Chain Rule (for cos (3x)) gives

f ′(x)
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Solution: Example 46(a)

Using the Product Rule followed by the Chain Rule (for cos (3x)) gives

f ′(x) = 2x cos (3x) + x2 [−3 sin (3x)]
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Solution: Example 46(a)

Using the Product Rule followed by the Chain Rule (for cos (3x)) gives

f ′(x) = 2x cos (3x) + x2 [−3 sin (3x)]

= 2x cos (3x) − 3x2 sin (3x)

= x [2 cos (3x) − 3x sin (3x)]

For f ′′(x) use the expression in the second line. Again using the Product and
Chain Rules gives

f ′′(x)
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This example illustrates the fact that when simplifying derivatives involving
trig functions, you sometimes need to use standard trigonometric identities.
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Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Example 47 – Damped Oscillations

Consider the function
q(t) = e−7t sin (24t)

This function describes damped simple harmonic motion. It gives the
position of a mass attached to a spring relative to the equilibrium (resting)
position of the spring. A frictional force acts to gradually slow the mass.

(a) Find q′(t) and q′′(t) and explain their meaning in terms of the damped
oscillatory motion.

(b) Note that q(0) = 0. This means that the initial position of the mass is at
the equilibrium position of the spring. Find the initial velocity of the
mass. Also find the velocity when the mass first returns to the
equilibrium position.

(c) Draw a graph of the function q(t).
(d) Find the first two times when the oscillating mass turns around. Show

the corresponding points on the graph of q(t).
(e) Show that the function q(t) satisfies the differential equation

d2q
dt2 + 14

dq
dt

+ 625q = 0

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
13/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 47(a)

Using the Product and Chain Rules gives

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
14/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 47(a)

Using the Product and Chain Rules gives

q′(t)

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
14/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 47(a)

Using the Product and Chain Rules gives

q′(t) = −7e−7t sin (24t) + e−7t [24 cos (24t)]

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
14/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 47(a)

Using the Product and Chain Rules gives

q′(t) = −7e−7t sin (24t) + e−7t [24 cos (24t)]

= e−7t [24 cos (24t) − 7 sin (24t)]

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
14/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

Example 46 – Differentiating with Trig Functions
Example 47 – Damped Oscillations

Solution: Example 47(a)

Using the Product and Chain Rules gives

q′(t) = −7e−7t sin (24t) + e−7t [24 cos (24t)]

= e−7t [24 cos (24t) − 7 sin (24t)]

From our interpretation of the derivative as a rate of change, we know that
this is the velocity of the mass at time t.
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the mass at time t.
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So the inverse of the tangent function is defined as

arctan x = tan−1 x = the angle between − π

2 and π

2 whose tangent is x
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The Derivative of the arctan Function

With this definition of the inverse tangent function, we see that its domain is
all real numbers and its range is

(

−π

2 , π

2
)

. Further, we have

tan (arctan x) = x and arctan (tan x) = x for − π

2 < x <
π

2

Taking the derivative of the first of the formulas above, as we did to find the
derivative of the ln function, gives

d
dx

tan (arctan x) =
(

1 + tan2 (arctan x)
) d

dx
arctan x

=
(

1 + x2
) d

dx
arctan x =

d
dx

x = 1

Solving for
d
dx

arctan x gives

d
dx

arctan x =
1

1 + x2
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The arcsin Function

Recall that the graph of the sine function looks
like this.
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Recall that the graph of the sine function looks
like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
shown in the graph, to the interval
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like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
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The arcsin Function

Recall that the graph of the sine function looks
like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
shown in the graph, to the interval

− π

2
≤ x ≤ π

2

gives a one-to-one function.

π

2−π

2

1

−1

So the inverse of the sine function is defined as

arcsin x = sin−1 x = the angle between − π

2 and π

2 whose sin is x
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Recall that the graph of the sine function looks
like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
shown in the graph, to the interval

− π
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So the inverse of the sine function is defined as
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Recall that the graph of the sine function looks
like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
shown in the graph, to the interval

− π

2
≤ x ≤ π

2

gives a one-to-one function.

π

2−π

2

1

−1

So the inverse of the sine function is defined as

arcsin x = sin−1 x = the angle between − π

2 and π

2 whose sin is x

The domain of inverse sine function, so defined, is [−1, 1] and its range is

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
21/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The arcsin Function
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like this. From this graph we realize that the
sine function is not one-to-one, and so does
not have an inverse function. However,
restricting the domain of the sine function, as
shown in the graph, to the interval
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gives a one-to-one function.
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So the inverse of the sine function is defined as
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2 and π

2 whose sin is x

The domain of inverse sine function, so defined, is [−1, 1] and its range is
[

−π

2 , π

2
]

.

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
21/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x)

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
22/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
22/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x)

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
22/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
22/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x)
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The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
22/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x =
d
dx

x = 1
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As with the arctan function, we have
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2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x =
d
dx

x = 1

Now for −π

2 ≤ x ≤ π

2 we have cos x ≥ 0
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2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x =
d
dx

x = 1

Now for −π

2 ≤ x ≤ π

2 we have cos x ≥ 0 , and using the basic Pythagorean

identity cos2 x + sin2 x = 1, gives cos x =
√

1 − sin2 x.
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Now for −π
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2 we have cos x ≥ 0 , and using the basic Pythagorean

identity cos2 x + sin2 x = 1, gives cos x =
√

1 − sin2 x. So that

d
dx
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√
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d
dx
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2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
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sin (arcsin x) = cos (arcsin x)
d
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arcsin x =
d
dx

x = 1

Now for −π

2 ≤ x ≤ π

2 we have cos x ≥ 0 , and using the basic Pythagorean
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√
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As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x =
d
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x = 1

Now for −π

2 ≤ x ≤ π
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The Derivative of the arcsin Function

As with the arctan function, we have

sin (arcsin x) = x and arcsin (sin x) = x for − π

2 ≤ x ≤ π

2

Taking the derivative of the first of the formulas above, as we just did for the
arctan, gives

d
dx

sin (arcsin x) = cos (arcsin x)
d
dx

arcsin x =
d
dx

x = 1

Now for −π

2 ≤ x ≤ π

2 we have cos x ≥ 0 , and using the basic Pythagorean

identity cos2 x + sin2 x = 1, gives cos x =
√

1 − sin2 x. So that

d
dx

sin (arcsin x) =
√

1 − sin2 (arcsin x)
d
dx

arcsin x =
√

1 − x2 d
dx

arcsin x

Solving for
d
dx

arcsin x gives

d
dx

arcsin x =
1√

1 − x2
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Example 48 – Differentiating with Inverse Trig Functions

Find and simplify the indicated derivative(s) of each function.

(a) Find f ′(x) and f ′′(x) for f (x) =
(

1 + x2) arctan x.

(b) Find
dy
dx

for y = arcsin
(√

1 − x2
)

.
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Solution: Example 48(a)

Using the Product Rule gives

f ′(x)
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Solution: Example 48(a)

Using the Product Rule gives

f ′(x) = 2x arctan x +
(

1 + x2
)

(

1
1 + x2

)
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Solution: Example 48(a)

Using the Product Rule gives

f ′(x) = 2x arctan x +
(

1 + x2
)

(

1
1 + x2

)

= 2x arctan x + 1

Clint Lee
Math 112 Lecture 13: Differentiation – Derivatives of Trigonometric Functions
24/25



Derivatives of the Basic Trigonometric Functions
Applying the Trig Function Derivative Rules

Derivatives of the Inverse Trigonometric Functions

The arctan Function
The arcsin Function
Example 48 – Differentiating with Inverse Trig Functions

Solution: Example 48(a)

Using the Product Rule gives

f ′(x) = 2x arctan x +
(

1 + x2
)

(

1
1 + x2

)

= 2x arctan x + 1

Taking the derivative of the expression above, using the Product Rule again,
gives

f ′′(x)
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Using the Product Rule gives

f ′(x) = 2x arctan x +
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)
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)

= 2x arctan x + 1
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Solution: Example 48(b)

Using the Chain Rule gives
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dx
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Solution: Example 48(b)

Using the Chain Rule gives

dy
dx

=









1
√

1 −
(√

1 − x2
)2









(

1
2

)

(

1 − x2
)−1/2

(−2x)
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Using the Chain Rule gives

dy
dx

=









1
√

1 −
(√

1 − x2
)2









(

1
2

)

(

1 − x2
)−1/2

(−2x)

=

(

1
√

1 − (1 − x2)

)

( −x√
1 − x2

)

=

(

1√
x2

)( −x√
1 − x2

)

= − x
|x|

√
1 − x2

Thus, if 0 ≤ x < 1, then

d
dx

arcsin
(
√

1 − x2
)

= − 1√
1 − x2
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Thus, if 0 ≤ x < 1, then

d
dx

arcsin
(
√

1 − x2
)

= − 1√
1 − x2

But you can show that

d
dx

arccos x = − 1√
1 − x2
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(
√
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)
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But you can show that
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So is it true that arccos x = arcsin
(√

1 − x2
)

?
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