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Fig*2) The \eft and right limits may qrow or decredee. without bound,
yielding vertical ’L‘&ncjenfa and "Cusps” as indicated in the Figure,

Combin&fic}nf; of Eg*l and ngf*a Mdy also occud.

b i &

|
(&M '

|
GM |

(6,0

Fig™2.



When Does a Function Not Have a Derivative at a Point?

A funetion has a derivative at a point x; if the slopes of the secant lines through P, ()
and a nearhy point @ on the graph approach a finite limit as O approaches P. Thus differen-
tiability is a “smoothness™ condition on the graph of f. A function can fail to have a deriva-
tive at a point for many reasons. including the existence of poinis where the graph has

1. a corner, where the one-sided 2, acusp, where 3. avertival tangent line,
derivatives dilfer the slope of PO where the slope of PO
approaches = from approaches = from both
one side and —= sides ur approaches —=
from the other from both sides

(here, —oe)



4. a discontinuiry (two examples shown) 5. wild oscillation

The last example shows a function that is continuous at x = ), but whose graph oscil-
lates wildly up and down as it approaches x = 0. The slopes of the secant lines through 0
oscillate between —1 and | as ¢ approaches 0. and do not have a limit at x = 0.
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The concept below is very, very important.
We will use this to prove various theorems.

DO NOT FORGET THIS CONCEPT !!!
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Alternate Formula For The Derivative

Differentiability and Continuity

The following alternative limit form of the derivative is useful in investigating the
relationship between differentiability and continuity. The derivative of f at ¢ is

f’((;) = lim f(x) — f(C) Alternative form ol denivative
x—=c x —C

provided this limit exists,
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As x approaches c, the secant line approaches
the tangent line.



Note that the existence of the limit in this alternative form requires that the

one-sided limits WE are 5{:[[[ Usins
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exist and are equal. These one-sided limits are called the derivatives from the left
and from the right, respectively. It follows that f is differentiable on the closed
interval [a, b] if it is differentiable on (a, b) and if the derivative from the right at a
and the derivative from the left at » both exist.

THEOREM 2.1 DIFFERENTIABILITY IMPLIES CONTINUITY

If f is differentiable at x = ¢, then f1s continuous at x = c.




Derivative As A Function
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FIGURE 3.6

We made the graph of y=f'(x) in (b) by plotting slopes from the graph of
y=f(x) in (a). The vertical coordinate of B' is the slope at B and so on.

The slope at E is approximately 8/4 = 2. In (b), we see that the rate of
change of f is negative for x between A' and D'; the rate of change is
positive for x to the right of D'.
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of 7-.-5-'00 because at those poin‘cs $'=0

When y=5'(vh s graphed as function, then
the values where §$10=0 are the

‘)t— injterc:ep’ts\ of S&0.

What can we learn from the graph of v = f'(x)? At a glance we can see

. where the rate of change of f 1s positive, negative, or zero;

2. the rough size of the growth rate at any .v and its size in relation to the size of f{x):
. where the rate of change itself 1s increasing or decreasing.




we must remember this because the

abowe in{:nrmajtion will be essential fo

waorking with proots invo\vinq Rolle’s
Theorem 8nd the Mean \alue Thearem.




