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SECTION 3.5: DIFFERENTIALS and 

LINEARIZATION OF FUNCTIONS 
 

 

LEARNING OBJECTIVES 
 

• Use differential notation to express the approximate change in a function  

on a small interval. 
 

• Find linear approximations of function values. 
 

• Analyze how errors can be propagated through functional relationships. 
 

 

PART A: INTERPRETING SLOPE AS MARGINAL CHANGE 
 

Our story begins with lines. We know lines well, and we will use them to (locally) 

model graphs we don’t know as well. 
 

Interpretation of Slope m as Marginal Change 
 

For every unit increase in x along a line, y changes by m. 
 

• If m < 0 , then y drops in value. 
 

 
 

If run = 1 , then slope m =
rise

run
=
rise

1
= rise . 
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PART B: DIFFERENTIALS and CHANGES ALONG A LINE 

 

dx and dy are the differentials of x and y, respectively. 

They correspond to “small” changes in x and y along a tangent line. 

We associate dy with “rise” and dx with “run.” 
 

• If dy < 0, we move down along the line. 
 

• If dx < 0, we move left along the line. 

 

The following is key to this section: 
 

Rise Along a Line 
 

slope =
rise

run
, so: 

 

rise( ) = slope( ) run( )  

 m =
dy

dx
 as a quotient of differentials, so: 

 

dy = m dx  
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PART C: LINEARIZATION OF FUNCTIONS 
 

Remember the Principle of Local Linearity from Section 3.1. Assume that a 

function   f   is differentiable at x1 , which we will call the “seed.” Then, the  

tangent line to the graph of   f   at the point x
1
, f x

1( )( )  represents the function L, 

the best local linear approximation to   f   close to x1 . L models (or “linearizes”)   f   

locally on a small interval containing x1 .  
 

   
 

The slope of the tangent line is given by f x1( )  or, more generically, by f x( ) , so 

changes along the tangent line are related by the following formulas: 
 

dy = m dx

dy = f x( ) dx
 

 

• This formula, written in differential form, is used to relate dx and dy as variables. 
 

• In Leibniz notation, this can be written as dy =
dy

dx
dx , though those who see 

dy

dx
 

as an inseparable entity may object to the appearance of “cancellation.” 
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x  and y  are the increments of x and y, respectively. 

They represent actual changes in x and y along the graph of   f .  
 

• If x changes x  units from, say, x1  (“seed, old x”) to x1 + x  (“new x”),  

then y (or   f  ) changes y  units from f x1( )  to f x1( ) + y , or f x1 + x( ) . 
 

 

The “new” function value f x1 + x( ) = f x1( ) + y . 
 

       Informally, f new x( ) = f old x( ) + actual rise y( ) . 

 

L x1 + x( ) , our linear approximation of f x1 + x( ) , is given by:  
 

   
L x1 + x( ) = f x1( ) + dy

L x1 + x( ) = f x1( ) + f x1( ) dx[ ]
 

 

         Informally, L new x( ) = f old x( ) + tangent rise dy( )  

      L new x( ) = f old x( ) + slope[ ] run dx[ ]  
 

When finding L x1 + x( ) , we set dx = x , and then we hope that dy y .  

Then, L x1 + x( ) f x1 + x( ) . 
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PART D: EXAMPLES 
 

Example 1 (Linear Approximation of a Function Value) 
 

Find a linear approximation of 9.1  by using the value of 9 . 

Give the exact value of the linear approximation, and also give a decimal 

approximation rounded off to six significant digits. 
 

In other words: Let f x( ) = x . Find a linear approximation L 9.1( )  for 

f 9.1( )  if x changes from 9 to 9.1. 
 

§ Solution Method 1 (Using Differentials) 
 

•   f   is differentiable on 0,( ) , which includes both 9 and 9.1, so this 

method is appropriate. 
 

• We know that f 9( ) = 9 = 3 exactly, so 9 is a reasonable choice for the 

“seed” x1 . 
 

• Find f 9( ) , the slope of the tangent line at the “seed point” 9, 3( ) . 
 

f x( ) = x = x1/2

f x( ) =
1

2
x 1/2

=
1

2 x

f 9( ) =
1

2 9
=

1

2 3( )
=
1

6

 

 

• Find the run dx (or x ). 
       

  

run dx = "new x" "old x"

= 9.1 9

= 0.1

 

 

 

 

 

 

 

 

 



(Section 3.5: Differentials and Linearization of Functions)  3.5.6 

 

• Find dy, the rise along the tangent line. 
 

  

rise dy = slope( ) run( )
= f 9( ) dx

=
1

6
0.1

=
1

60

 

 

• Find L 9.1( ) , our linear approximation of f 9.1( ) . 
 

       

L 9.1( ) = f 9( ) + dy

= 3+
1

60

=
181

60
exact value( )

3.01667

 

 

WARNING 1: Many students would forget to add f 9( )  and simply give dy 

as the approximation of 9.1 . This mistake can be avoided by observing 

that 9.1  should be very different from 
 

1

60
. 

 

• In fact, f 9.1( ) = 9.1 3.01662 , so our approximation was accurate to 

five significant digits. Also, the actual change in y is given by: 
 

     

y = f 9.1( ) f 9( )

= 9.1 9

3.01662 3

0.01662

 

 

This was approximated by dy =
1

60
0.01667 . 

 

The error is given by: dy y 0.01667 0.01662 0.00005 . 

(See Example 5 for details on relative error, or percent error.) 
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• Our approximation L 9.1( )  was an overestimate of f 9.1( ) , because the 

graph of   f   curves downward (it is “concave down”; see Chapter 4). 
 

 
 

• Differentials can be used to quickly find other linear approximations close 

to x = 9 . (The approximations may become unreliable for values of x far 

from 9.) 
 

Find a linear 

approximation of 

f 9 + x( )  

run 
 

dx = x  

rise 

dy =
1

6
dx  

Linear 

approximation, 

L 9 + x( )  

f 8.8( ) = 8.8  0.2 
1

30
0.03333 

L 8.8( ) = 3
1

30
2.96667

 

f 8.9( ) = 8.9  0.1 
1

60
0.01667  

L 8.9( ) = 3
1

60
2.98333

 

f 9.1( ) = 9.1  

(We just did this.) 
0.1 

1

60
0.01667  

L 9.1( ) = 3+
1

60
3.01667

 

f 9.2( ) = 9.2  0.2 
1

30
0.03333 

L 9.2( ) = 3+
1

30
3.03333

 

 

§ 
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§ Solution Method 2 (Finding an Equation of the Tangent Line First: y = L(x)) 
 

• Although this method may seem easier to many students, it does not stress 

the idea of marginal change the way that Method 1 does. Your instructor 

may demand Method 1. 
 

• The tangent line at the “seed point” 9, 3( )  has slope f 9( ) =
1

6
, as we saw 

in Method 1. Its equation is given by: 
 

y y1 = m x x1( )

y 3 =
1

6
x 9( )

L x( ), or y = 3+
1

6
x 9( ), which takes the form with variable dx( ):

 

 

 L x( ) = f 9( ) + f 9( ) dx[ ]
dy

 

 

             Also, L x( ) = 3+
1

6
x 9( )  simplifies as: L x( ) =

1

6
x +

3

2
. 

 

• In particular, L 9.1( ) = 3+
1

6
9.1 9( ) or

1

6
9.1( ) +

3

2
3.01667 , as before. § 
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Example 2 (Linear Approximation of a Trigonometric Function Value) 
 

Find a linear approximation of tan 42°( )  by using the value of tan 45°( ) . 

Give the exact value of the linear approximation, and also give a decimal 

approximation rounded off to six significant digits. 
 

§ Solution Method 1 (Using Differentials) 
 

Let f x( ) = tan x . 
 

WARNING 2: Convert to radians. In this example, we need to compute 

the run dx using radians. If f x( )  or f x( )  were x tan x , for example, then 

we would also need to convert to radians when evaluating function values 

and derivatives. (Also, a Footnote in Section 3.6 will discuss why the 

differentiation rules for trigonometric functions given in Section 3.4 do not 

apply if x is measured in degrees.) 
 

• Converting to radians, 45° =
4

 and 42° =
7

30
. (As a practical matter,  

it turns out that we don’t have to do these conversions, as long as we know 

what the run dx is in radians.) We want to find a linear approximation 

L
7

30
 for f

7

30
 if x changes from 

4
 to 

7

30
. 

 

•   f   is differentiable on, among other intervals, 
2
,
2

, which includes 

both 
4

 and 
7

30
, so this method is appropriate. 

 

• We know that f
4

= tan
4

= 1  exactly. 

 

• Find f
4

, the slope of the tangent line at the “seed point” 
4
, 1 . 

 

f x( ) = tan x

f x( ) = sec2 x

f
4

= sec2
4

= 2

 

 



(Section 3.5: Differentials and Linearization of Functions)  3.5.10 

 

• Find the run dx (or x ). It is usually easier to subtract the degree 

measures before converting to radians. Since it turns out dx < 0  here,  

we run left (as opposed to right) along the tangent line. 
 

     

run dx = "new x" "old x"

= 42° 45°

= 3°

= 3°( )
180°

Converting to radians( )

=
60

 

 

• Find dy, the rise along the tangent line. Actually, since it turns out dy < 0  

here, it really corresponds to a drop. 
 

  

rise dy = slope( ) run( )

= f
4

dx

= 2
60

=
30

 

 

• Find L
7

30
, our linear approximation of tan 42°( ) , or f

7

30
. 

 

        

L
7

30
= f

4
+ dy

= 1+
30

=
30

30
exact value( )

0.895280

 

 

• In fact, f
7

30
= tan 42°( ) 0.900404 . 
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• Our approximation L
7

30
 was an underestimate of f

7

30
.  

See the figures below. 

             § 
 

 

§ Solution Method 2 (Finding an Equation of the Tangent Line First: y = L(x)) 
 

• The tangent line at the “seed point” 
4
, 1  has slope f

4
= 2 , as we 

saw in Method 1. Its equation is given by: 
 

y y1 = m x x1( )

y 1= 2 x
4

L x( ), or y = 1+ 2 x
4

, which takes the form with variable dx( ):

 

 

         

 

L x( ) = f
4

+ f
4

dx[ ]

dy

. Simplified, L x( ) = 2x +
2

2
. 

 

• In particular, L
7

30
= 1+ 2

7

30 4
= 1+ 2

60
0.895280 , or 

L
7

30
= 2

7

30
+
2

2
0.895280 , as before. § 
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PART E: APPLICATIONS 
 

Since a typical calculator has a square root button and a tangent button, the 

previous examples might not seem useful.  
 

The table on Page 3.5.7 demonstrates how differentials can be used to quickly find 

multiple approximations of function values on a small interval around the 

“seed.” 
 

Differentials can be used even if we do not have a formula for the function we are 

approximating, as we now demonstrate. 
 

Example 3 (Approximating Position Values in the Absence of Formulas) 
 

A car is moving on a coordinate line. Let y = s t( ) , the position of the car  

(in miles) t hours after noon. We are given that s 1( ) = 20 miles  and 

v 1( ) = s 1( ) = 50 mph . 
 

Find a linear 

approximation of 

s 1+ t( )  

run 
 

dt = t  

rise 
 

dy = 50 dt  

Linear approximation, 

L 1+ t( )  

s 0.8( )  0.2 10 
L 0.8( ) = 20 10

= 10 mi
 

s 0.9( )  0.1 5         
L 0.9( ) = 20 5

= 15 mi
 

s 1.1( )  0.1 5         
L 1.1( ) = 20 + 5

= 25 mi
 

s 1.2( )  0.2 10 
L 1.2( ) = 20 +10

= 30 mi
 

 

   (Axes are scaled differently.) § 
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PART F: MEASUREMENT ERROR and PROPAGATED ERROR 
 

Let x be the actual (or exact) length, weight, etc. that we are trying to measure. 
 

Let x  (or dx) be the measurement error. The error could be due to a poorly 

calibrated instrument or merely random chance.  
 

Example 4 (Measurement Error) 
 

The radius of a circle (unbeknownst to us) is 10.7 inches (the actual value), 

but we measure it as 10.5 inches (the measured value). Sources differ on 

the definition of measurement error. 
 

1) If we let measurement error =  (measured value) – (actual value), then the 

“seed” x = 10.7  inches, and x = 10.5 10.7 = 0.2  inches.  

This approach is more consistent with our usual notion of “error.” 
 

2) If we let measurement error =  (actual value) – (measured value), then the 

“seed” x = 10.5  inches, and x = 10.7 10.5 = 0.2  inches.  

We will adopt this approach, because we know the measured value but 

not the actual value in an exercise such as Example 5. This suggests that 

the measured value is more appropriate than the actual value as the 

“seed.” 
 

(See Footnote 1.) § 
 

If y = f x( )  for some function   f , then an error in measuring x may lead to 

propagated error in y, denoted by y . As before, we approximate y  by dy for 

convenience. 
 

Example 5 (Propagated Error) 
 

Let x be the radius of a circle, and let y be its area. Then, y, or  f x( ) = x2
. 

We measure the radius using an instrument that may be “off” by as much as 

0.5 inches; more precisely, it has a maximum possible absolute value of 

measurement error of 0.5 inches. We use the instrument to obtain a 

measured value of 10.5 inches. Estimate the maximum possible absolute 

value of the propagated error that we will obtain for the area of the circle. 

Use differentials and give an approximation written out to five significant 

digits. 
 

§ Solution 
 

dy = f x( ) dx

= 2 x dx
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We use the “seed” x1 = 10.5  inches, the measured value, for x. 
 

Let the run dx be the maximum possible absolute value of the 

measurement error, which is 0.5 inches. (Really, 0.5 in dx 0.5 in .) 
 

Then, dy , our approximation for the maximum possible absolute value of 

the propagated error in y, is given by: 
 

dy = 2 x dx

2 10.5( ) 0.5( )

32.987 in2
 

 

That is, we estimate that the propagated error in the area of the circle will 

be “off” by no more than 32.987 in2  in either direction (high or low). 
 

• Estimates of the area. If we take the measured value of 10.5 inches for the 

radius, we will obtain the following measured value for the area: 
 

y, or  f 10.5( ) = 10.5( )
2

346.361 in2
 

 

Since we estimate that we are “off” by no more than 32.987 in2 ,  

we estimate that the actual value of the area is between 313.374 in2  and 

379.348 in2 .  
 

Without differentials, we would say that the actual value of the area is 

between f 10.0( )  and f 11.0( ) , or between 314.159 in2  and 380.133 in2 . 

(The benefit of using differentials is more apparent when the function 

involved is more complicated.) 
 

• Relative error and percent error. Is 32.987 in2  “bad” or “good”?  

The relative error and the percent error give us some context to decide. 
 

Relative error =
dy

y
really, 

maximum dy

measured y

32.987

346.361
0.095239,  or  9.5239% percent error( )

 

 

(If the measured area had been something like y = 1,000,000 in2 , then 

32.987 in2  probably wouldn’t be a big deal.) 
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• Actual propagated error. If the actual value of the radius is 10.7 inches, 

then the actual value of the area is f 10.7( ) = 10.7( )
2

359.681 in2 , and 

the actual propagated error is given by: 
 

y = f 10.7( ) f 10.5( )

= 10.7( )
2

10.5( )
2

13.320 in2
 

 

• Notation. If we let r =  the radius and A =  the area, then we obtain the 

more familiar formula A = r2 . Also, dA = 2 r dr . 
 

• Geometric approach. Observe that: 
 

dA =  (circumference of circle of radius r) (thickness of ring) 
 

This approximates A , the actual propagated error in the area. The figures 

below demonstrate why this approximation makes sense. 
 

Imagine cutting the shaded ring below along the dashed slit and 

straightening it out. We obtain a trapezoid that is approximately a rectangle 

with dimensions 2 r  and dr. The area of both shaded regions is A , and 

we approximate it by dA, where dA = 2 r dr . 
 

 
(not to scale) 
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(Axes are scaled differently.) § 

 

FOOTNOTES 
 

1. Defining measurement (or absolute) error. Definition 1) in Example 4 is used in Wolfram 

MathWorld, namely that measurement error = (measured value) – (actual value).  

Sometimes, absolute value is taken. See “Absolute Error,” Wolfram Mathworld, Web,  

25 July 2011, <http://mathworld.wolfram.com/AbsoluteError.html>. 

• Larson in his calculus text (9
th
 ed.) uses Definition 2):  

measurement error = (actual value) – (measured value). On top of the rationale given in 

Example 4, this is also more consistent with the notion of error when studying confidence 

intervals and regression analysis in statistics. 


