Calculus I - Lecture 15Linear Approximation & Differentials

Lecture Notes:http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

March 11, 2014

Equation of Tangent Line

Recall the equation of the tangent line of a curve $y=f(x)$ at the point $x = a$.

The general equation of the tangent line is

$$
y = L_a(x) := f(a) + f'(a)(x - a).
$$

That is the point-slope form of a line through the point $(a, f(a))$ with slope f^\prime (a).

Linear Approximation

It follows from the geometric picture as well as the equation

$$
\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=f'(a)
$$

which means that $\frac{f(x)-f(a)}{f(a)}$ $\frac{(1) - T(a)}{x - a}$ $\approx f'$ $\left(\hspace{0.2mm}a\right)$ or

$$
f(x) \approx f(a) + f'(a)(x - a) = L_a(x)
$$

for x close to \emph{a} . Thus $\emph{L}_{\emph{a}}(x)$ is a good $\emph{approximation}$ of $f(x)$ for x near ^a.

If we write $x = a + \Delta x$ and let Δx be sufficiently small this becomes $f(a + \Delta x) - f(a) \approx f'$ (a)∆x. Writing also $\Delta y = \Delta f := f(a + \Delta \mathsf{x}) - f(a)$ this becomes

> $\Delta y = \Delta f \approx f'$ (a)∆x

In words: for small Δx the $\boldsymbol{\mathsf{change}}\; \Delta y$ in y if one goes from x to $x+\Delta x$ is approximately equal to f' (a)∆^x.

Example: a) Find the linear approximation of $f(x) = \sqrt{x}$ at $x=16.$

b) Use it to approximate $\sqrt{15.9}.$

Example: Estimate $\cos(\frac{\pi}{4} + 0.01) - \cos(\frac{\pi}{4})$.

Solution:

Let $f(x) = \cos(x)$. Then we have to find $\Delta f = f(a + \Delta x) - f(a)$ for $a=\frac{\pi}{4}$ and $\Delta x=.01$ (which is small).

Using linear approximation we have:

$$
\Delta f \approx f'(a) \cdot \Delta x
$$

= $-\sin(\frac{\pi}{4}) \cdot .01$ (since $f'(x) = -\sin x$)
= $-\frac{\sqrt{2}}{2} \cdot \frac{1}{100} = -\frac{\sqrt{2}}{200}$

Example: The radius of a sphere is increased from 10 cm to10.1 cm. Estimate the change in volume.

Solution:

$$
V = \frac{4}{3}\pi r^3 \qquad \text{(volume of a sphere)}
$$

\n
$$
\frac{dV}{dr} = \frac{d}{dr} \left(\frac{4}{3}\pi r^3\right) = \frac{4}{3}\pi \cdot 3r^2 = 4\pi r^2
$$

\n
$$
\Delta V \approx \frac{dV}{dr} \cdot \Delta r = 4\pi r^2 \cdot \Delta r
$$

\n
$$
= 4\pi \cdot 10^2 \cdot (10.1 - 10) = 400\pi \cdot \frac{1}{10} = 40\pi
$$

The volume of the sphere is increased by 40 π cm^3 .

Example: The radius of a disk is measured to be $10\pm .1$ cm (error estimate). Estimate the maximum error in the approximate area of the disk.

Solution:

$$
A = \pi r^2 \qquad \text{(area of a disk)}
$$

\n
$$
\frac{dA}{dr} = \frac{d}{dr}(\pi \cdot r^2) = 2\pi r
$$

\n
$$
\Delta A \approx \frac{dA}{dr} \cdot \Delta r = 2\pi r \cdot \Delta r
$$

\n
$$
= 2\pi \cdot 10 \cdot (\pm 0.1) = \pm 20\pi \cdot \frac{1}{10} = \pm 2\pi
$$

The area of the disk has approximately a maximal error of $2\pi\;\mathrm{cm}^2$.

Example: The dimensions of a rectangle are measured to be 10 ± 0.1 by 5 ± 0.2 inches.

What is the approximate uncertainty in the area measured?

Solution: We have $A = xy$ with $x = 10 \pm 0.1$ and $y = 5 \pm 0.2$.

We estimate the measurement error $\Delta_\mathsf{x}\mathsf{A}$ with respect to the variable x and the error $\Delta_{\mathsf y}\mathcal A$ with respect to the variable $\mathsf y.$

$$
\frac{dA}{dx} = \frac{d}{dx}(xy) = y
$$

$$
\frac{dA}{dy} = \frac{d}{dy}(xy) = x
$$

$$
\Delta_x A \approx \frac{dA}{dx} \cdot \Delta x = y \cdot \Delta x
$$

$$
\Delta_y A \approx \frac{dA}{dy} \cdot \Delta y = x \cdot \Delta y
$$

The **total** estimated uncertainty is:

$$
\Delta A = \Delta_x A + \Delta_y A = y \cdot \Delta x + x \cdot \Delta y
$$

\n
$$
\Delta A = 5 \cdot (\pm .1) + 10 \cdot (\pm .2) = \pm .5 + \pm 2.0 = \pm 2.5
$$

\nThe uncertainty in the area is approximately of 2.5 inches².

Differentials

Those are a the most murky objects in Calculus I. The way theyare usually defined in in calculus books is difficult to understand for a Mathematician and maybe for students, too.

Remember that we have

$$
\frac{\Delta y}{\Delta x} \approx \frac{\mathrm{d}y}{\mathrm{d}x} = f'(x).
$$

The idea is to consider $\mathrm{d}\mathsf{y}$ and $\mathrm{d}\mathsf{x}$ as infinitesimal small numbers such that $\frac{\mathrm{d} \mathsf{y}}{\mathrm{d} \mathsf{x}}$ is not just an approximation but equals f' rewrites this as $\left(\hspace{0.1 cm}a\right)$ and one

$$
\mathrm{d}y = f'(x) \cdot \mathrm{d}x.
$$

This obviously makes no sense since the only "infinitesimal small number" which I know in calculus is 0 which gives the true but useless equation $0=f^\prime$ $(\mathsf{x})\cdot 0$ and the nonsense equation $\frac{0}{0}=f'$ $(x).$ So the official explanation is that

$$
\mathrm{d}y = f'(x) \cdot \mathrm{d}x
$$

describes the linear approximation for the $\bf {t}$ angen $\bf t$ line to $f(x)$ at the point x which gives indeed this equation. Then $\mathrm{d} x$ and $\mathrm{d} y$ are numbers satisfying this equation. One problem is that one does not like to keep x fixed and f^\prime $\left(\mathrm{\mathsf{x}}\right)$ varies with $\mathrm{\mathsf{x}}\text{.}$ But how to understand the dependence of ${\rm d}x$ and ${\rm d}y$ on $x?$

The symbolic explanation is that

$$
\mathrm{d}y = f'(x) \cdot \mathrm{d}x
$$

is an equation between the old variable x and the new variables $\mathrm{d} x$ and $\mathrm{d}\mathsf{y}$ but we **never will plug in numbers** for $\mathrm{d}\mathsf{x}$ and $\mathrm{d}\mathsf{y}$.

Note that $\frac{\mathrm{d} \mathsf{y}}{\mathrm{d} \mathsf{x}}=\mathsf{f}^\prime$ $\left(\mathsf{x}\right)$ makes sense with both interpretations for $\mathrm{d} x\neq 0.$

For applications (substitution in integrals) we will usually need thesecond interpretation

Example: Express $\mathrm{d}x$ in terms of $\mathrm{d}y$ for the function $y = e^x$ 2 .

Solution:

$$
\frac{dy}{dx} = e^{x^2} \cdot 2x
$$

\n
$$
dy = e^{x^2} \cdot 2x \cdot dx
$$

\n
$$
dx = \frac{1}{e^{x^2} \cdot 2x} \cdot dy = \frac{dy}{2xy}
$$