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SECTION 2.8: CONTINUITY 
 
 

LEARNING OBJECTIVES 
 

     • Understand and know the definitions of continuity at a point (in a one-sided and  

     two-sided sense), on an open interval, on a closed interval, and variations thereof. 

     • Be able to identify discontinuities and classify them as removable, jump, or  

     infinite. 

     • Know properties of continuity, and use them to analyze the continuity of rational, 

     algebraic, and trigonometric functions and compositions thereof. 

     • Understand the Intermediate Value Theorem (IVT) and apply it to solutions of 

     equations and real zeros of functions. 
 

 

PART A: CONTINUITY AT A POINT 
 

Informally, a function   f   with domain  is everywhere continuous (on )   

we can take a pencil and trace the graph of   f   between any two distinct points on 

the graph without having to lift up our pencil. 
 

We will make this idea more precise by first defining continuity at a point a 

 
a( )  and then continuity on intervals. 

 

Continuity at a Point a 
 

f   is continuous at x = a   
 

1) 
 
f a( )  is defined (real); that is, a Dom f( ) , 

 

2) 
  
lim
x a

f x( )  exists (is real), and 
 

3) 
  
lim
x a

f x( ) = f a( ) . 

 

f   is discontinuous at x = a    f   is not continuous at x = a . 
 

Comments 
 

1) ensures that there is literally a point at  x = a . 

2) constrains the behavior of   f   immediately around x = a . 

3) then ensures “safe passage” through the point a, f a( )( )  on the graph of 

y = f x( ) . Some sources just state 3) in the definition, since the form of 

3) implies 1) and 2). 
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Example 1 (Continuity at a Point; Revisiting Section 2.1, Example 1) 
 

Let 
  
f x( ) = 3x2

+ x 1. Show that   f   is continuous at x = 1. 
 

§ Solution 
 

1) 
  
f 1( ) = 3, a real number 1 Dom f( )( )  

2) 
  
lim
x 1

f x( ) = 3, a real number, and 

3) 
  
lim
x 1

f x( ) = f 1( ) . 

 

Therefore,   f   is continuous at x = 1. The graph of y = f x( )  is below. 

 

 

 

 

 

Note: The Basic Limit Theorem for 

Rational Functions in Section 2.1 

basically states that a rational function is 

continuous at any number in its domain. § 

Example 2 (Discontinuities at a Point; Revisiting Section 2.2, Example 2) 
 

Let 
 
f x( ) = x . Explain why   f   is discontinuous at x = 1 and x = 0 . 

 

§ Solution 

• f 1( )  is not real 

1 Dom f( )( ) , so   f   is 

discontinuous at x = 1. 
 

•
  
f 0( ) = 0 , but 

  
lim
x 0

x  

does not exist (DNE), so   f   

is discontinuous at x = 0 . 

The graph of y = f x( )  is below. 
  

 
 

 

Some sources do not even bother calling  1 and 0 “discontinuities” of   f , 

since   f   is not even defined on a punctured neighborhood of x = 1 or of 

x = 0 . § 
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PART B: CLASSIFYING DISCONTINUITIES 
 

We now consider cases where a function   f   is discontinuous at x = a , even though 

f   is defined on a punctured neighborhood of x = a . 
 

We will classify such discontinuities as removable, jump, or infinite. 

(See Footnotes 1 and 2 for another type of discontinuity.) 

Removable Discontinuities 
 

A function   f   has a removable discontinuity at x = a   
 

1) 
  
lim
x a

f x( )  exists (call this limit L), but 
 

2)  f   is still discontinuous at x = a . 

• Then, the graph of y = f x( )  has a hole at the point 
  
a, L( ) . 

 

Example 3 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 7) 

Let g x( ) = x + 3, x 3( ) . Classify the discontinuity at x = 3 . 
 

§ Solution 
 

g has a removable discontinuity 

at x = 3 , because: 
 

1) 
  
lim
x 3

g x( ) = 6 , but 

 

2)  g is still discontinuous at x = 3 ;  

here, g 3( )  is undefined. 

 

 

 

 

The graph of y = g x( )  below has a 

hole at the point 
 
3, 6( ) . 

                
§ 
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Example 4 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 8) 
 

Let h x( ) =
x + 3, x 3

7, x = 3
 . Classify the discontinuity at x = 3 . 

 

§ Solution 

h has a removable discontinuity 

at x = 3 , because: 
 

1) 
  
lim
x 3

h x( ) = 6 , but 

 

2)  h is still discontinuous at x = 3 ;  

here, lim
x 3

h x( ) h 3( ) , 

because  6 7 . 
 

The graph of y = h x( )  also has a 

hole at the point 3, 6( ) . 
 

 
§ 
 

Why are These Discontinuities Called “Removable”? 
 

The term “removable” is a bit of a misnomer here, since we have no 

business changing the function at hand. 
 

The idea is that a removable discontinuity at a can be removed by 

(re)defining the function at a; the new function will then be continuous at a.  
 

For example, if we were to define 
  
g 3( ) = 6 in Example 3 and redefine 

  
h 3( ) = 6  in Example 4, then we would remove the discontinuity at x = 3  in 

both situations. We would obtain the graph below. 
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Jump Discontinuities 
 

A function   f   has a jump discontinuity at x = a   
 

1) 
  

lim
x a

f x( )  exists, and     (call this limit L
1
) 

 

2) lim
x a+

f x( )  exists, but      (call this limit 
  
L

2
) 

 

3) 
  

lim
x a

f x( ) lim
x a+

f x( ) .     ( L
1

L
2
) 

 

• Therefore, 
  
lim
x a

f x( )  does not exist (DNE).  
 

• It is irrelevant how f a( )  is defined, or if it is defined at all. 

Example 5 (Jump Discontinuity at a Point; Revisiting Section 2.1, Example 14) 
 

Let 

  

f x( ) =
x

x
=

x

x
= 1, if x > 0

x

x
= 1, if x < 0

 . Classify the discontinuity at x = 0 . 

 

§ Solution 

f   has a jump discontinuity at 

x = 0 , because: 
 

1) 
  

lim
x 0

f x( ) = 1, and 

 

2) 
  

lim
x 0+

f x( ) = 1, but 

 

3) 
  
lim
x 0

f x( )  does not exist 

(DNE), because  1 1. 
 

We cannot remove this 

discontinuity by defining 

  
f 0( ) . 

The graph of y = f x( )  is below.  
 

        

§ 



(Section 2.8: Continuity)  2.8.6 
 

 

Infinite Discontinuities 
 

A function   f   has an infinite discontinuity at x = a   
 

  
lim

x a+
f x( )  or 

  
lim

x a
f x( )  is  or . 

 

• That is, the graph of y = f x( )  has a VA at x = a . 
 

• It is irrelevant how 
 
f a( )  is defined, or if it is defined at all. 

Example 6 (Infinite Discontinuities at a Point; Revisiting Section 2.4, Exs. 1 and 2) 
 

The functions described below have infinite discontinuities at x = 0 . 

We will study   ln x  in Chapter 7 (see also the Precalculus notes, Section 3.2). 
 

f x( ) =
1

x
   

  
g x( ) =

1

x2
   

  
h x( ) = ln x  

         
§ 



(Section 2.8: Continuity)  2.8.7 

 

PART C: CONTINUITY ON AN OPEN INTERVAL 
 

We can extend the concept of continuity in various ways. 

(For the remainder for this section, assume a < b .) 
 

Continuity on an Open Interval 
 

A function   f   is continuous on the open interval 
  
a, b( )    

f   is continuous at every number (point) in a, b( ) . 
 

• This extends to unbounded open intervals of the form  

a,( ) , , b( ) , and ,( ) . 
 

In Example 6, all three functions are continuous on the interval 0,( ) . 

The first two functions are also continuous on the interval 
 

, 0( ) . 
We will say that the “continuity intervals” of the first two functions are: 

, 0( ) , 0,( ) . However, this terminology is not standard. 
 

• In Footnote 1,   f   has the singleton (one-element) set 0{ }  as a  

“degenerate continuity interval.” See also Footnotes 2 and 3. 
 

• Avoid using the union ( )  symbol here. In Section 2.1, Example 10, 

 f   was continuous on , 0( ]  and 0, 1( ) , but not on , 1( ) . 
 

 

PART D: CONTINUITY ON OTHER INTERVALS; ONE-SIDED CONTINUITY 

 
Continuity on a Closed Interval 

 

A function   f   is continuous on the closed interval a, b   
 

1)  f   is defined on a, b , 
 

2)  f   is continuous on a, b( ) ,  
 

3) 
  

lim
x a+

f x( ) = f a( ) , and 
 

4) 
  

lim
x b

f x( ) = f b( ) . 

 

3) and 4) weaken the continuity requirements at the endpoints, a and b. 

Imagine taking limits as we “push outwards” towards the endpoints. 
 

3) implies that   f   is continuous from the right at a. 

4) implies that   f   is continuous from the left at b. 
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Example 7 (Continuity on a Closed Interval) 
 

Let 
  
f x( ) = 1 x2 . Show that   f   is continuous on the closed interval 1, 1[ ] . 

 

§ Solution 
 

The graph of y = f x( )  is below. 
 

 
 

 

  

y = 1 x2

y2
= 1 x2 y 0( )

x2
+ y2

= 1 y 0( )

 

 

The graph is the upper half of the unit 

circle centered at the origin, including 

the points 
 

1, 0( )  and 
 
1, 0( ) . 

 

f   is continuous on 1,1 , because: 
 

1)  f   is defined on 
 

1,1 , 
 

2)  f   is continuous on 1,1( ) ,  
 

3) 
  

lim
x 1+

f x( ) = f 1( ) , so   f   is continuous from the right at 1, and 
 

4) 
  

lim
x 1

f x( ) = f 1( ) , so   f   is continuous from the left at 1. 

 

Note: 
  
f 1( ) = 0, and 

  
f 1( ) = 0 , but they need not be equal. 

 

 f   has 1,1  as its sole “continuity interval.” When giving “continuity 

intervals,” we include brackets where appropriate, even though   f   is not 

continuous (in a two-sided sense) at 1 and at 1 (WARNING 1).  
 

• Some sources would call 
 

1,1( )  the continuity set of   f  ; it is the set of all 

real numbers at which   f   is continuous. (See Footnotes 2 and 3.)  § 

 

Challenge to the Reader: Draw a graph where   f   is defined on 
  

a, b , and   f   is 

continuous on 
  
a, b( ) , but   f   is not continuous on the closed interval 

  
a, b . 
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Continuity on Half-Open, Half-Closed Intervals 

 f   is continuous on an interval of the form a, b)  or a, )   

 f   is continuous on 
  
a, b( )  or 

  
a,( ) , respectively, and it is continuous  

from the right at a. 
 

 f   is continuous on an interval of the form 
  
a, b(  or 

  
, b(   

 f   is continuous on 
  
a, b( )  or 

  
, b( ) , respectively, and it is continuous  

from the left at b. 

 

Example 8 (Continuity from the Right; Revisiting Example 2) 
 

Let f x( ) = x . 

 

 f   is continuous on 
 
0,( ) . 

  

lim
x 0+

x = 0 = f 0( ) , so   f   is 

continuous from the right at 0. 
 

The sole “continuity interval” 

of   f   is 0, ) . 

 

 
 
 

The graph of y = f x( )  is below.       

 § 

Example 9 (Continuity from the Left) 
 

Let 
 
f x( ) = x . 

 

 f   is continuous on , 0( ) . 
  

  
lim

x 0
x = 0 = f 0( ) , so   f   is 

continuous from the left at 0. 
 

The sole “continuity interval” 

of   f   is 
 

, 0( . 

 

 
 
 

The graph of y = f x( )  is below. 
 

 § 
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PART E: CONTINUITY THEOREMS 
 

 

Properties of Continuity / Algebra of Continuity Theorems 
 

If   f   and g are functions that are continuous at x = a , then so are the 

functions: 
 

•  f + g ,  f g , and  fg .  
 

• 
f

g
, if 

  
g a( ) 0 . 

 

•  f
n , if n is a positive integer exponent 

 
n +( ) . 

 

• fn , if: 

• (n is an odd positive integer), or  

• (n is an even positive integer, and f a( ) > 0). 

 

In Section 2.2, we showed how similar properties of limits justified the Basic 

Limit Theorem for Rational Functions. Similarly, the properties above, together 

with the fact that constant functions and the identity function (represented by 

f x( ) = x ) are everywhere continuous on , justify the following: 

 

Continuity of Rational Functions 
 

A rational function is continuous on its domain.  
 

• That is, the “continuity interval(s)” of a rational function   f   are  

its domain interval(s).  
 

In particular, polynomial functions are everywhere continuous (on  ). 
 

Although this is typically true for algebraic functions in general, there are 

counterexamples (see Footnote 4). 

 

Example 10 (Continuity of a Rational Function; Revisiting Example 6) 
 

If 
  
f x( ) =

1

x
, then 

  
Dom f( ) = , 0( ) 0,( ) . 

 f   is rational, so the “continuity intervals” of   f   are: 
 

, 0( ) , 0,( ) . § 
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When analyzing the continuity of functions that are not rational, we may need to 

check for one-sided continuity at endpoints of domain intervals. 

Example 11 (Continuity of an Algebraic Function; Revisiting Chapter 1, Ex. 6) 
 

Let 
  
h x( ) =

x + 3

x 10
. What are the “continuity intervals” of h?  

 

§ Solution 
 

In Chapter 1, we found that Dom h( ) = 3,10) 10,( ) . 

We will show that the “continuity intervals” are, in fact, the  

domain intervals, 
 

3,10)  and 
 
10,( ) . 

 

By the Algebra of Continuity Theorems, we find that h is continuous on 

3,10( )  and 10,( ) .  
 

Now, 
  

lim
x 3+

h x( ) = 0 = h 3( ) , because Limit Form 
0+

13
0 . 

Therefore, h is continuous from the right at x = 3 , and its  

“continuity intervals” are: 3,10)  and 10,( ) . 

 

The graph of y = h x( )  is below. 
 

 
§ 
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Continuity of Composite Functions 
 

If g is continuous at a, and   f   is continuous at g a( ) , then 
  f g  is  

continuous at a. 
 

(See Footnote 5.) 
 

Continuity of Basic Trigonometric Functions 
 

The six basic trigonometric functions (sine, cosine, tangent, cosecant,  

secant, and cotangent) are continuous on their domain intervals.  
 

 

Example 12 (Continuity of a Composite Function) 
 

Let 

  

h x( ) = sec
1

x
. Where is h continuous? 

 

§ Solution 
 

Observe that 
  
h x( ) = f g( ) x( ) = f g x( )( ) , where: 

the “inside” function is given by 
  
g x( ) =

1

x
, and  

the “outside” function   f   is given by 
  
f ( ) = sec , where 

  
=

1

x
. 

 

g is continuous at all real numbers except 0 x 0( ) . 
f   is continuous on its domain intervals. 
 

   

sec  is real cos 0,  and  x 0

2
+ n n( ) ,  and  x 0

1

x 2
+ n n( ) ,  and  x 0

 

 

We can replace both sides of the inequation with 

their reciprocals, because we exclude the case 

  x = 0 , and both sides are never 0. 
 

 

   

x
1

2
+ n

n( ) ,  and  x 0  
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x
1

2
+ n

2

2

n( ) ,  and  x 0

x
2

+ 2 n
n( ) ,  and  x 0

 

 

h is continuous on: 
 

   

x x
2

+ 2 n
n( ) ,  and  x 0 , or 

 

   

x x
2

2n +1( )
n( ) ,  and  x 0 . 

§ 
 

 

PART F: THE INTERMEDIATE VALUE THEOREM (IVT) 
 

Continuity of a function constrains its behavior in important (and useful) ways. 

Continuity is central to some key theorems in calculus. We will see the Extreme 

Value Theorem (EVT) in Chapter 4 and Mean Value Theorems (MVTs) in 

Chapters 4 and 5. We now discuss the Intermediate Value Theorem (IVT), which 

directly relates to the meaning of continuity. We will motivate it before stating it. 

 

Example 13 (Motivating the IVT) 
 

Let 
  
f x( ) = x2  on the x-interval 

 
0, 2 . The graph of y = f x( )  is below. 

 

 

  f   is continuous on 0, 2 , 

  
f 0( ) = 0 , and 

f 2( ) = 4 . 

 

The IVT guarantees that every real 

number (d) between 0 and 4 is a value of  

(is taken on by)   f   at some x-value (c) in 

 
0, 2 . §
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The Intermediate Value Theorem (IVT): Informal Statement 
 

If a function   f   is continuous on the closed interval a, b ,  

then   f   takes on every real number between 
 
f a( )  and 

 
f b( )  on 

  
a, b . 

 

The Intermediate Value Theorem (IVT): Precise Statement 
 

Let 
  
min f a( ) , f b( )( )  be the lesser of 

 
f a( )  and 

 
f b( ) ;  

if they are equal, then we take their common value. 

Let 
  
max f a( ) , f b( )( )  be the greater of f a( )  and f b( ) ;  

if they are equal, then we take their common value. 
 

A function   f   is continuous on 
  

a, b   

d min f a( ) , f b( )( ) , max f a( ) , f b( )( ) , c a, b   f c( ) = d . 

 

 

Example 14 (Applying the IVT to Solutions of Equations) 
 

Prove that x2 = 3 has a solution in 
 

0, 2 . 
 

§ Solution 
 

Let f x( ) = x2 . (We also let the desired function value, d = 3 .) 
 

  f   is continuous on 
 

0, 2 , 

f 0( ) = 0 , 

f 2( ) = 4 , and 

3 0, 4[ ]. 
 

Therefore, by the IVT, c 0, 2   (such that) f c( ) = 3 . 

That is, x2 = 3 has a solution (c) in 
 

0, 2 . 

Q.E.D. § 
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In Example 14, c = 3  was our solution to x2 = 3 in 0, 2[ ] ; d = 3  here. 
 

 
 

To verify the conclusion of the IVT in general, we can give a formula for c given 

any real number d in 
 

0, 4 , where c 0, 2[ ]  and f c( ) = d . 

 

Example 15 (Verifying the Conclusion of the IVT; Revisiting Examples 13 and 14) 

Verify the conclusion of the IVT for 
  
f x( ) = x2  on the x-interval 0, 2[ ] . 

 

§ Solution 
 

 f   is continuous on 
 

0, 2 , so the IVT applies. 
  
f 0( ) = 0 , and 

  
f 2( ) = 4 . 

Let 
  
d 0, 4 , and let  c = d . 

 

• The following justifies our formula for c : 
 

  

f c( ) = d  and c 0, 2

c2
= d  and c 0, 2

c = d , a real number in 0, 2

 

 

WARNING 2: We do not write  c = ± d , because either   d = 0 , or a 

value for c would fall outside of 0, 2 . 

 

Observe:   0 d 4 0 d 2 . 

Then, 
  
c 0, 2 , and 

  
f c( ) = c2

= d( )
2

= d . 

Therefore, d 0, 4 , c 0, 2   f c( ) = d . § 
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Example 16 (c Might Not Be Unique) 

Let f x( ) = sin x  on the x-interval 

 

0,
5

2
. The graph of y = f x( )  is below. 

 

 
 

f 0( ) = 0 , and 

  

f
5

2
= 1. Because   f   is continuous on 

 

0,
5

2
, the IVT 

guarantees that every real number d between 0 and 1 is taken on by   f   at 

some x-value c in 

 

0,
5

2
.  

 

WARNING 3: Given an appropriate value for d, there might be more than 

one appropriate choice for c. The IVT does not forbid that. 
 

WARNING 4: Also, there are real numbers outside of 
 

0,1  that are taken 

on by   f   on the x-interval 

 

0,
5

2
. The IVT does not forbid that, either. § 
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PART G: THE BISECTION METHOD FOR APPROXIMATING A ZERO OF A 

FUNCTION 
 

Our ability to solve equations is equivalent to our ability to find zeros of 

functions. For example, f x( ) = g x( ) f x( ) g x( ) = 0 ; we can solve the first 

equation by finding the zeros of h x( ) , where h x( ) = f x( ) g x( ) . 
 

We may have to use computer algorithms to approximate zeros of functions if we 

can’t find them exactly. 
 

• While we do have (nastier) analogs of the Quadratic Formula for 3
rd

- and 

4
th
-degree polynomial functions, it has actually been proven that there is  

no similar formula for higher-degree polynomial functions. 
 

The Bisection Method, which is the basis for some of these algorithms, uses the 

IVT to produce a sequence of smaller and smaller intervals that are guaranteed 

to contain a zero of a given function. 

 

The Bisection Method for Approximating a Zero of a Continuous Function   f 
 

Let’s say we want to approximate a zero of a function   f . 
 

Find x-values a
1
 and b

1
 
  
a

1
< b

1( )  such that 
  
f a

1( )  and 
  
f b

1( )  have  

opposite signs and   f   is continuous on a
1
, b

1
. (The method fails if such  

x-values cannot be found.) 
 

According to the IVT, there must be a zero of   f   in a
1
, b

1
, which we call 

our “search interval.” 
 

For example, consider the graph of y = f x( )  below. Our search interval is 

apparently 2, 8 . 
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If 
  
f a

1( )  or 
  
f b

1( )  were 0, then we would have found a zero of   f , and we 

could either stop or try to approximate another zero. 
 

If neither is 0, then we take the midpoint of the search interval and 

determine the sign of f x( )  there (in red below). We can then shrink the 

search interval (in purple below) and repeat the process. We call the 

Bisection Method an iterative method because of this repetition. 
 

 

x

x

x

 

We stop when we find a zero, or until the search interval is small enough 

so that we are satisfied with taking its midpoint as our approximation. 
 

A key drawback to numerical methods such as the Bisection Method is that, 

unless we manage to find n distinct real zeros of an   n
th

-degree polynomial 

 
f x( ) , we may need other techniques to be sure that we have found all of the 

real zeros, if we are looking for all of them. § 

 

Example 17 (Applying the Bisection Method; Revisiting Example 14) 
 

We can approximate 3  by approximating the positive real solution of 

x2 = 3, or the positive real zero of h x( ) , where h x( ) = x2 3 . 
 

Search interval a, b[ ] Sign of h a( )  Sign of h b( )  Midpoint 
Sign of h 

there 

0, 2[ ]   +  1  

1, 2[ ]  +  1.5  

1.5, 2[ ]   +  1.75 +  

1.5, 1.75[ ]  +  1.625  

etc. § 

In Section 4.8, we will use Newton’s Method for approximating zeros of a 

function, which tends to be more efficient. However, Newton’s Method requires 

differentiability of a function, an idea we will develop in Chapter 3. 



(Section 2.8: Continuity)  2.8.19 
 

FOOTNOTES 
 

1. A function with domain   that is only continuous at 0. (Revisiting Footnote 1 in  

Section 2.1.) Let f x( ) =
0, if x is a rational number x( )
x, if x is an irrational number x ;  really, x \( )

  . 

f   is continuous at x = 0 , because 
  
f 0( ) = 0 , and we can use the Squeeze (Sandwich) 

Theorem to prove that 
  
lim
x 0

f x( ) = 0 , also. The discontinuities at the nonzero real numbers 

are not categorized as removable, jump, or infinite. 

 

2. Continuity sets and a nowhere continuous function. See Cardinality of the Set of Real 

Functions With a Given Continuity Set by Jiaming Chen and Sam Smith. The 19
th
-century 

German mathematician Dirichlet came up with a nowhere continuous function, D: 

D x( ) =
0, if x is a rational number x( )
1, if x is an irrational number x ;  really, x \( )

 

 

3. Continuity on a set. This is tricky to define! See “Continuity on a Set” by R. Bruce Crofoot, 

The College Mathematics Journal, Vol. 26, No. 1 (Jan. 1995) by the Mathematical 

Association of America (MAA). Also see Louis A. Talman, The Teacher’s Guide to Calculus 

(web). Talman suggests:  

Let S be a subset of Dom f( ) ; that is, 
  
S Dom f( ) .   f   is continuous on S   

 a S ,  > 0 ,  > 0   x S  and x a <( ) f x( ) f a( ) < . 

• The definition essentially states that, for every number a in the set of interest, its function 

value is arbitrarily close to the function values of nearby x-values in the set. Note that we use 

 
f a( )  instead of L, which we used to represent 

  
lim
x a

f x( ) , because we need 

lim
x a

f x( ) = f a( )  (or possibly some one-sided variation) in order to have continuity on S. 

• This definition covers / subsumes our definitions of continuity on open intervals; closed 

intervals; half-open, half-closed intervals; and unions (collections) thereof. 

• One possible criticism against this definition is that it implies that the functions described in 

Footnote 4 are, in fact, continuous on the singleton set {0}. This conflicts with our definition 

of continuity at a point in Part A because of the issue of nonexistent limits. Perhaps we 

should require that   f   be defined on some interval of the form 
  

a, c)  with c > a  or the form 

  
c, a(  with c < a . 

• Crofoot argues for the following definition: f   is continuous on S if the restriction of   f   to S 

is continuous at each number in S. He acknowledges the use of one-sided continuity when 

dealing with closed intervals. 
 

4. An algebraic function that is not continuous on its domain. Let 
 
f x( ) = x + x . 

Dom f( ) = 0{ } , a singleton (a set consisting of a single element), but   f   is not continuous at 

0 (by Part A), because lim
x 0

f x( )  does not exist (DNE). The same is true for 
  
f x( ) = x2 . 



(Section 2.8: Continuity)  2.8.20. 
 

5. Continuity and the limit properties in Section 2.2, Part A. Let a, K .  

If 
  
lim
x a

g x( ) = K , and   f   is continuous at K, then: 

   
lim
x a

f g( ) x( ) = lim
x a

f g x( )( ) = f lim
x a

g x( )( ) = f K( ) . Basically, continuity allows   f   to 

commute with a limit operator: lim
x a

f g x( )( ) = f lim
x a

g x( )( ) . Think: “The limit of a (blank) 

is the (blank) of the limit.” This relates to Property 5) on the limit of a power, Property 6) on 

the limit of a constant multiple, and Property 7) on the limit of a root in Section 2.2.  

For example,   f   could represent the squaring function. 

6. A function that is continuous at every irrational point and discontinuous at every 

rational point. See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.27. Also 

see Tom Vogel, http://www.math.tamu.edu/~tvogel/gallery/node6.html (web). If x is rational, 

where 
 
x =

a

b
 
 
a, b( ) ,   b > 0 , and the fraction is simplified, then let 

  
f x( ) =

1

b
. If x is 

irrational, let 
  
f x( ) = 0 . Vogel calls this the “ruler function,” appealing to the image of 

markings on a ruler. However, there does not exist a function that is continuous at every 

rational point and discontinuous at every irrational point. 

7. An everywhere continuous function that is nowhere monotonic (either increasing or 

decreasing). See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.29. There 

is no open interval on which the function described there is either increasing or decreasing. 


