
CHAPTER 2: 
 

Limits and Continuity 
 

 

 

     2.1: An Introduction to Limits 

 

     2.2: Properties of Limits 

 

     2.3: Limits and Infinity I: Horizontal Asymptotes (HAs) 

 

     2.4: Limits and Infinity II: Vertical Asymptotes (VAs) 

 

     2.5: The Indeterminate Forms 0/0 and  /  

 

     2.6: The Squeeze (Sandwich) Theorem 

 

     2.7: Precise Definitions of Limits 
 

     2.8: Continuity 
 

 

 

 

 

 

   • The conventional approach to calculus is founded on limits. 

 

   • In this chapter, we will develop the concept of a limit by example. 

 

   • Properties of limits will be established along the way. 

 

   • We will use limits to analyze asymptotic behaviors of functions and their graphs. 

 

   • Limits will be formally defined near the end of the chapter. 

 

   • Continuity of a function (at a point and on an interval) will be defined using limits. 
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SECTION 2.1: AN INTRODUCTION TO LIMITS 
 

 

LEARNING OBJECTIVES 
 

     • Understand the concept of (and notation for) a limit of a rational function at a  

     point in its domain, and understand that “limits are local.” 

     • Evaluate such limits. 

     • Distinguish between one-sided (left-hand and right-hand) limits and  

     two-sided limits  and what it means for such limits to exist. 

     • Use numerical / tabular methods to guess at limit values. 

     • Distinguish between limit values and function values at a point. 

     • Understand the use of neighborhoods and punctured neighborhoods in the 

     evaluation of one-sided and two-sided limits. 

     • Evaluate some limits involving piecewise-defined functions. 

 

PART A: THE LIMIT OF A FUNCTION AT A POINT 
 

Our study of calculus begins with an understanding of the expression 
  
lim
x a

f x( ) , 

where a is a real number (in short, a ) and   f   is a function. This is read as: 
 

“the limit of f x( )  as x approaches a.” 
 

• WARNING 1:  means “approaches.” Avoid using this symbol outside 

the context of limits. 
 

• 
  
lim
x a

 is called a limit operator. Here, it is applied to the function   f . 

 

 

  
lim
x a

f x( )  is the real number that f x( )  approaches as x approaches a, if such a 

number exists. If f x( )  does, indeed, approach a real number, we denote that 

number by L (for limit value). We say the limit exists, and we write: 
 

  
lim
x a

f x( ) = L ,   or   
 
f x( ) L  as  x a . 

 

These statements will be rigorously defined in Section 2.7. 
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When we evaluate 
  
lim
x a

f x( ) , we do one of the following: 

 

• We find the limit value L (in simplified form). 
 

We write: lim
x a

f x( ) = L . 

 

• We say the limit is  (infinity) or  (negative infinity). 
 

We write: 
  
lim
x a

f x( ) = , or 
  
lim
x a

f x( ) = . 

 

• We say the limit does not exist (“DNE”) in some other way. 
 

We write: lim
x a

f x( )  DNE. 

(The “DNE” notation is used by Swokowski but few other authors.) 

If we say the limit is  or , the limit is still nonexistent. Think of  and  

as “special cases of DNE” that we do write when appropriate; they indicate why 

the limit does not exist. 
 

       lim
x a

f x( )  
 

exists           does not exist 
 

  The limit is a real number, L.      “DNE”     
 

             

 
 

  
lim
x a

f x( )  is called a limit at a point, because x = a  corresponds to a point on the 

real number line. Sometimes, this is related to a point on the graph of   f . 

Example 1 (Evaluating the Limit of a Polynomial Function at a Point) 
 

Let 
  
f x( ) = 3x2

+ x 1. Evaluate lim
x 1

f x( ) . 
 

§ Solution 
 

f   is a polynomial function with implied domain 
 
Dom f( ) = .  

We substitute (“plug in”)   x = 1 and evaluate 
  
f 1( ) . 

 

WARNING 2: Sometimes, the limit value 
  
lim
x a

f x( )  does not equal 

the function value f a( ) . (See Part C.) 
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lim
x 1

f x( ) = lim
x 1

3x2
+ x 1( )  

WARNING 3: Use grouping symbols when taking the limit of 

an expression consisting of more than one term. 

      = 3 1( )
2

+ 1( ) 1 

WARNING 4: Do not omit the limit operator 
  
lim
x 1

 until this 

substitution phase. 
 

WARNING 5: When performing substitutions, be prepared to 

use grouping symbols. Omit them only if you are sure they are 

unnecessary. 

      = 3 

We can write: lim
x 1

f x( ) = 3, or 
  
f x( ) 3 as x 1. 

 

• Be prepared to work with function and variable names other than   f   and x. 

For example, if 
  
g t( ) = 3t2

+ t 1, then lim
t 1

g t( ) = 3, also. 

 

The graph of 
 
y = f x( )  is below. 

 

Imagine that the arrows in the figure 

represent two lovers running towards each 

other along the parabola. What is the  

y-coordinate of the point they are 

approaching as they approach x = 1?  

It is 3, the limit value.  
 

TIP 1: Remember that y-coordinates of 

points along the graph correspond to 

function values. § 
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Example 2 (Evaluating the Limit of a Rational Function at a Point) 
 

Let 
  
f x( ) =

2x +1

x 2
. Evaluate lim

x 3
f x( ) . 

 

§ Solution 
 

f   is a rational function with implied domain 
   
Dom f( ) = x x 2{ } . 

We observe that 3 is in the domain of   f  in short, 3 Dom f( )( ) , so we 

substitute (“plug in”)   x = 3 and evaluate 
  
f 3( ) . 

 

  

lim
x 3

f x( ) = lim
x 3

2x +1

x 2

=
2 3( ) +1

3( ) 2

= 7

 

 

The graph of 
 
y = f x( )  is below. 

 

 

 

 

 

 

 

 

Note: As is often the case, you might not 

know how to draw the graph until later. 

 

• Asymptotes. The dashed lines are asymptotes, which are lines that a 

graph approaches  
 

- in a “long-run” sense  

(see the horizontal asymptote, or “HA,” at y = 2 ), or  
 

- in an “explosive” sense  

(see the vertical asymptote, or “VA,” at x = 2 ).  

“HA”s and “VA”s will be defined using limits in Sections 2.3 

and 2.4, respectively. 
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• “Limits are Local.” What if the lover on the left is running along 

the left branch of the graph? In fact, we ignore the left branch, 

because of the following key principle of limits. 
 

“Limits [at a Point] are Local” 
 

When analyzing lim
x a

f x( ) , we only consider the behavior  

of   f    in the “immediate vicinity” of x = a . 
 

In fact, we may exclude consideration of x = a  itself,  

as we will see in Part C. 
 

In the graph, we only care what happens “immediately around”  

x = 3. Section 2.7 will feature a rigorous approach. § 

Example 3 (Evaluating the Limit of a Constant Function at a Point) 
 

  
lim

x
2 = 2 .  

 

(Observe that substituting x =  

technically works here, since there is 

no “x” in “2,” anyway.) 
 

 

• A constant approaches itself. We can write 2 2  (“2 approaches 2”) as 

 x . When we think of a sequence of numbers approaching 2, we may 

think of distinct numbers such as 2.1, 2.01, 2.001, …. However, the 

constant sequence 2, 2, 2, … is also said to approach 2. § 

All constant functions are also polynomial functions, and all polynomial 

functions are also rational functions. The following theorem applies to all three 

Examples thus far. 

 

Basic Limit Theorem for Rational Functions 
 

If   f   is a rational function, and 
  
a Dom f( ) , 

then 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate the limit, substitute (“plug in”)  x = a , and evaluate 
 
f a( ) . 

 

We will justify this theorem in Section 2.2. 
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PART B: ONE- AND TWO-SIDED LIMITS; EXISTENCE OF LIMITS 
 

lim
x a

 is a two-sided limit operator in 
  
lim
x a

f x( ) , because we must consider the 

behavior of   f   as x approaches a from both the left and the right. 
 

  
lim

x a
 is a one-sided left-hand limit operator. 

  
lim

x a
f x( )  is read as: 

 

“the limit of f x( )  as x approaches a from the left.” 
 

  
lim

x a+
 is a one-sided right-hand limit operator. 

  
lim

x a+
f x( )  is read as: 

 

“the limit of f x( )  as x approaches a from the right.” 
 

 

Example 4 (Using a Numerical / Tabular Approach to Guess a Left-Hand Limit 

Value) 
 

Guess the value of 
  

lim
x 3

x + 3( )  using a table of function values. 

 

§ Solution 
 

Let 
  
f x( ) = x + 3. 

  
lim

x 3
f x( )  is the real number, if any, that 

 
f x( )  

approaches as x approaches 3 from lesser (or lower) numbers. That is, we 

approach   x = 3 from the left along the real number line. 
 

We select an increasing sequence of real numbers (x values) approaching 3 

such that all the numbers are close to (but less than) 3. We evaluate the 

function at those numbers, and we guess the limit value, if any, the function 

values are approaching. For example: 
 

x 2.9 2.99 2.999  3  

  
f x( ) = x + 3 5.9 5.99 5.999  6 (?)  

 

We guess: 
  

lim
x 3

x + 3( ) = 6 . 

 

WARNING 6: Do not confuse superscripts with signs of numbers.  

Be careful about associating the “ ” superscript with negative numbers. 

Here, we consider positive numbers that are close to 3. 
 

• If we were taking a limit as x approached 0, then we would 

associate the “ ” superscript with negative numbers and the “+” 

superscript with positive numbers. 
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The graph of 
 
y = f x( )  is below. We only consider the behavior of   f 

“immediately” to the left of x = 3 . 

        

WARNING 7: The numerical / tabular approach is unreliable, and it is 

typically unacceptable as a method for evaluating limits on exams.  

(See Part D, Example 11 to witness a failure of this method.) However, it 

may help us guess at limit values, and it strengthens our understanding of 

limits. § 

Example 5 (Using a Numerical / Tabular Approach to Guess a Right-Hand Limit 

Value) 
 

Guess the value of 
  

lim
x 3+

x + 3( )  using a table of function values. 

 

§ Solution 
 

Let 
  
f x( ) = x + 3. 

  
lim

x 3+
f x( )  is the real number, if any, that 

 
f x( )  

approaches as x approaches 3 from greater (or higher) numbers. That is, 

we approach   x = 3 from the right along the real number line. 
 

We select a decreasing sequence of real numbers (x values) approaching 3 

such that all the numbers are close to (but greater than) 3. We evaluate the 

function at those numbers, and we guess the limit value, if any, the function 

values are approaching. For example: 

x  3
+

 3.001 3.01 3.1 

  
f x( ) = x + 3  6 (?)  6.001 6.01 6.1 

 

We guess: lim
x 3+

x + 3( ) = 6 . 
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The graph of 
 
y = f x( )  is below. We only consider the behavior of   f 

“immediately” to the right of x = 3 . 

        
§ 

Existence of a Two-Sided Limit at a Point 
 

  
lim
x a

f x( ) = L   lim
x a

f x( ) = L,   and lim
x a+

f x( ) = L , a, L( ) . 

 

• A two-sided limit exists  the corresponding left-hand and right-hand 

limits exist, and they are equal. 

• If either one-sided limit does not exist (DNE), or if the two one-sided  

limits are unequal, then the two-sided limit does not exist (DNE). 

 

Our guesses, 
  

lim
x 3

x + 3( ) = 6  and 
  

lim
x 3+

x + 3( ) = 6 , imply lim
x 3

x + 3( ) = 6 . 

 

In fact, all three limits can be evaluated by substituting x = 3  into x + 3( ) : 
 

  
lim

x 3
x + 3( ) = 3+ 3= 6; 

  
lim

x 3+
x + 3( ) = 3+ 3= 6; 

  
lim
x 3

x + 3( ) = 3+ 3= 6 . 

This procedure is generalized in the following theorem. 
 

 

Extended Limit Theorem for Rational Functions 
 

If   f   is a rational function, and 
  
a Dom f( ) , 

then 
  

lim
x a

f x( ) = f a( ) , 
  

lim
x a+

f x( ) = f a( ) , and 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate each limit, substitute (“plug in”) x = a , and evaluate f a( ) . 
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WARNING 8: Substitution might not work if   f   is not a rational function. 

Example 6 (Pitfalls of Substituting into a Function that is Not Rational) 
 

Let 
  
f x( ) = x +1. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

Observe that Dom f( ) = x x 0{ } = 0, ) , because x  is real when 

x 0 , but it is not real when x < 0 . 
 

This is important, because x is only allowed to approach 0 (or whatever a is) 

through Dom f( ) . Here, x is allowed to approach 0 from the right but not 

from the left.  

 

Right-Hand Limit: lim
x 0+

f x( ) = 1. 

Substituting x = 0  works: 
  

lim
x 0+

f x( ) = lim
x 0+

x +1( ) = 0 +1= 1. 

 

Left-Hand Limit: lim
x 0

f x( )  does not exist (DNE). 

Substituting x = 0  does not work here. 

Two-Sided Limit: 
  
lim
x 0

f x( )  does not exist (DNE). 

This is because the corresponding left-hand limit does not exist 

(DNE). 

Observe that   f   is not a rational function, so the aforementioned theorem 

does not apply, even though 
  
0 Dom f( ) .   f   is, however, an algebraic 

function, and we will discuss algebraic functions in Section 2.2. § 
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PART C: IGNORING THE FUNCTION AT a 
 

Example 7 (Ignoring the Function at ‘a’ When Evaluating a Limit;  

Modifying Examples 4 and 5) 
 

Let 
  
g x( ) = x + 3, x 3( ) .  

 

(We are deleting 3 from the domain of the function in Examples 4 and 5;  

this changes the function.) 
 

Evaluate 
  

lim
x 3

g x( ) , 
  

lim
x 3+

g x( ) , and 
  
lim
x 3

g x( ) . 

 

§ Solution 
 

Since 3 Dom g( ) , we must delete the point 3, 6( )  from the graph of 

y = x + 3 to obtain the graph of g below. 
 

        
 

We say that g has a removable discontinuity at x = 3  (see Section 2.8), and 

the graph of g has a hole at the point 3, 6( ) . 
 

Observe that, as x approaches 3 from the left and from the right,  

g x( )  approaches 6, even though g x( )  never equals 6. 
 

  
g 3( )  is undefined, yet the following statements are true: 

 

  
lim

x 3
g x( ) = 6 , 

  
lim

x 3+
g x( ) = 6 , and  

  
lim
x 3

g x( ) = 6 . 

 

There literally does not have to be a point at x = 3  (in general, x = a ) for 

these limits to exist! Observe that substituting x = 3  into x + 3( )  works. § 
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Example 8 (Ignoring the Function at ‘a’ When Evaluating a Limit; 

Modifying Example 7) 
 

Let the function h be defined piecewise as follows: 

  

h x( ) =
x + 3, x 3

7, x = 3
 . 

 

(A piecewise-defined function applies different evaluation rules to different 

subsets of (groups of numbers in) its domain. This type of function can lead 

to interesting limit problems.) 
 

Evaluate 
  
lim
x 3

h x( ) . 

 

§ Solution 
 

h is identical to the function g from Example 7, except that 3 Dom h( ) , and 

h 3( ) = 7 . As a result, we must add the point 3, 7( )  to the graph of g to 

obtain the graph of h below. 
 

        
 

As with g, h also has a removable discontinuity at x = 3 , and its graph also 

has a hole at the point 3, 6( ) . 
 

Observe that, as x approaches 3 from the left and from the right,  

h x( )  also approaches 6. 
 

  
lim
x 3

h x( ) = 6  once again, even though h 3( ) = 7 . 

 

WARNING 2 repeat (applied to   f  ): Sometimes, the  

limit value 
  
lim
x a

f x( )  does not equal the function value 
 
f a( ) . § 

 

As in Example 7, observe that substituting x = 3  into x + 3( )  works. § 
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The existence (or value) of lim
x a

f x( )  need not depend on the  

existence (or value) of f a( ) . 
 

 

• Sometimes, it does help to know what f a( )  is when evaluating 
  
lim
x a

f x( ) . 

In Section 2.8, we will say that   f   is continuous at a  lim
x a

f x( ) = f a( ) , 

provided that 
  
lim
x a

f x( )  and 
 
f a( )  exist. We appreciate continuity, because we 

can then simply substitute x = a  to evaluate a limit, which was what we did when 

we applied the Basic Limit Theorem for Rational Functions in Part A. 
 

 

• In Examples 7 and 8, we dealt with functions that were not continuous at x = 3 , 

yet substituting x = 3  into x + 3( )  allowed us to evaluate the one- and two-sided 

limits at a = 3 . We will develop theorems that cover these Examples. We first need 

the following definitions. 

 

A neighborhood of a is an open interval along the real number line that is  

symmetric about a. 
 

For example, the interval 0, 2( )  is a neighborhood of 1. Since 1 is the 

midpoint of 0, 2( ) , the neighborhood is symmetric about 1. 

A punctured (or deleted) neighborhood of a is constructed by taking a 

neighborhood of a and deleting a itself. 
 

For example, the set 0, 2( ) \ 1{ } , which can be written as 0, 1( ) 1, 2( ) ,  

is a punctured neighborhood of 1. It is a set of numbers that are 

“immediately around” 1 on the real number line. 
 

• The notation 0, 2( ) \ 1{ }  indicates that we can construct it by taking 

the neighborhood 0, 2( )  and deleting 1. 
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“Puncture Theorem” for Limits of Locally Rational Functions 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a punctured neighborhood of x = a . 

Then, 
  
lim
x a

f x( ) = lim
x a

r x( ) = r a( ) . 

• To evaluate the limits, substitute (“plug in”)  x = a  into r x( ) , and  

evaluate r a( ) . 

 

• That is, if a function rule is given by a rational expression r x( )   

locally (immediately) around x = a , where a Dom r( ) , then  

evaluate the rational expression at a to obtain the limit of the  

function at a. 

Refer to Examples 7 and 8. Let r x( ) = x + 3 . Observe that r is a rational function, 

and 3 Dom r( ) . Both the g and h functions were defined by x + 3  locally 

(immediately) around x = 3 . More precisely, they were defined by x + 3  on some 

punctured neighborhood of x = 3 , say 2.9, 3.1( ) \ 3{ } . Therefore, 
 

  
lim
x 3

g x( ) = lim
x 3

r x( ) = r 3( ) = 3+ 3= 6 , and 

 

  
lim
x 3

h x( ) = lim
x 3

r x( ) = r 3( ) = 3+ 3= 6 . 

 

It is easier to write: 
 

  
lim
x 3

g x( ) = lim
x 3

x + 3( ) = 3+ 3= 6, and 

 

  
lim
x 3

h x( ) = lim
x 3

x + 3( ) = 3+ 3= 6 . 

 

The figure below refers to g, but it also applies to h. 

The dashed line segment at x = 3  reiterates the puncture there. 
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Why does the theorem only require that a function be locally rational about a? 

Consider the following Example. 
 

Example 9 (Limits are Local) 
 

Let 

  

f t( ) =
t + 2, t < 0

t , t 0
 . Evaluate 

  
lim

t 1
f t( ) . 

 

§ Solution 
 

Observe that f t( ) = t + 2  is the only rule that is relevant as t approaches 1 

locally from the left and from the right. We only consider values of t that 

are “immediately around” a = 1. “Limits are Local!” 
 

It is irrelevant that the rule f t( ) = t  is different, or that it is not rational. § 

The following definitions will prove helpful in our study of one-sided limits. 
 

 

A left-neighborhood of a is an open interval of the form c, a( ) , where c < a . 
 

A right-neighborhood of a is an open interval of the form a, c( ) , where c > a . 

A punctured neighborhood of a consists of both a left-neighborhood of a and  

a right-neighborhood of a. 
 

For example, the interval 0, 1( )  is a left-neighborhood of 1. It is a set of 

numbers that are “immediately to the left” of 1 on the real number line. 
 

The interval 1, 2( )  is a right-neighborhood of 1. It is a set of numbers that 

are “immediately to the right” of 1 on the real number line. 

 
 

We now modify the “Puncture Theorem” for one-sided limits.  
 

• Basically, when evaluating a left-hand limit such as 
  

lim
x a

f x( ) , we use the 

function rule that governs the x-values “immediately to the left” of a on the real 

number line.  
 

• Likewise, when evaluating a right-hand limit such as lim
x a+

f x( ) , we use the 

rule that governs the x-values “immediately to the right” of a. 
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Variation of the “Puncture Theorem” for Left-Hand Limits 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a left-neighborhood of x = a . 

Then, 
  

lim
x a

f x( ) = lim
x a

r x( ) = r a( ) . 

Variation of the “Puncture Theorem” for Right-Hand Limits 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a right-neighborhood of x = a . 

Then, lim
x a+

f x( ) = lim
x a+

r x( ) = r a( ) . 

 

 

Example 10 (Evaluating One-Sided and Two-Sided Limits of a Piecewise-Defined 

Function) 
 

Let 

  

f x( ) =
3, if x 0

2x2 , if 0 < x < 1

2x, if x > 1

 . 

Evaluate the one-sided and two-sided limits of   f   at 1 and at 0. 
 

§ Solution 

The graph of y = f x( )  is below. It helps, but it is not required to evaluate 

limits. Instead, we can evaluate limits of relevant function rules. 
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lim
x 1

f x( ) = lim
x 1

2x2

= 2 1( )
2

= 2

 

  The left-hand limit as x 1 : 

We use the rule 
  
f x( ) = 2x2 , because it 

applies to a left-neighborhood of 1,  

say 
 
0.9,1( ) . 

  

lim
x 1+

f x( ) = lim
x 1+

2x

= 2 1( )
= 2

 

The right-hand limit as x 1+ : 

We use the rule f x( ) = 2x , because it 

applies to a right-neighborhood of 1,  

say 
 
1,1.1( ) . 

  
lim
x 1

f x( ) = 2  

The two-sided limit as x 1: 

The left-hand and right-hand limits at 1 

exist, and they are equal, so the two-sided 

limit exists and equals their common value. 
  

  

lim
x 0

f x( ) = lim
x 0

3

= 3

 

  The left-hand limit as x 0 : 

We use the rule f x( ) = 3 , because it 

applies to a left-neighborhood of 0,  

say 
 

0.1, 0( ) . 

  

lim
x 0+

f x( ) = lim
x 0+

2x2

= 2 0( )
2

= 0

 

  The right-hand limit as x 0 + : 

We use the rule f x( ) = 2x2 , because it 

applies to a right-neighborhood of 0,  

say 0, 0.1( ) . 

lim
x 0

f x( )  

does not exist (DNE) 

  The two-sided limit as x 0 : 

The left-hand and right-hand limits at 0 

exist, but they are unequal, so the  

two-sided limit does not exist (DNE). 
 

 

              
   § 
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PART D: NONEXISTENT LIMITS 
 

Example 11 (Nonexistent Limits) 
 

Let 

  

f x( ) = sin
1

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. Ask your instructor if s/he might have you 

even attempt to draw this. In a sense, the classic sine wave is being turned 

“inside out” relative to the y-axis. 
 

 
 

 

 

As x approaches 0 from the right  

(or from the left), the function values 

oscillate between 1 and 1.  

They do not approach a single real 

number. Therefore, 

  
lim

x 0+
f x( )  does not exist (DNE), 

  
lim

x 0
f x( )  does not exist (DNE), and  

lim
x 0

f x( )  does not exist (DNE). 

 

 

Note 1: The y-axis is not a vertical asymptote (VA) here, because the graph 

and the function values are not “exploding” without bound around the  

y-axis. 
 

Note 2: Here is an example of how the numerical / tabular approach 

introduced in Part B might lead us astray: 
 

x  0
+

 
1

3
 

1

2
 

1
 

  

f x( ) = sin
1

x
 

 

0 (?)

NO!
 0 0 0 

§ 
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Example 12 (Infinite and/or Nonexistent Limits) 
 

Let 
  
f x( ) =

1

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and lim

x 0
f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. We will discuss this graph in later sections. 
 

 
 

 
 

As x approaches 0 from the right, the 

function values increase without bound.  
 

Therefore, 
  

lim
x 0+

f x( ) = . 

 

As x approaches 0 from the left, the  

function values decrease without bound.  
 

Therefore, 
  

lim
x 0

f x( ) = . 

 

 and  are mismatched. 
 

Therefore, lim
x 0

f x( )  does not exist (DNE). 

In fact, all three limits do not exist. For example, 
  

lim
x 0+

f x( ) , does not 

exist, because the function values do not approach a single real number as 

x approaches 0 from the right. The expressions  and  indicate why the 

one-sided limits do not exist, and we write  and  where appropriate. § 

Example 13 (Infinite and Nonexistent Limits) 
 

Let 
  
f x( ) =

1

x2
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. Observe that   f   is an even function.
 

 

 

  
lim

x 0+
f x( ) = , 

  
lim

x 0
f x( ) = , and 

  
lim
x 0

f x( ) = . § 
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Example 14 (A Nonexistent Limit) 
 

Let 
 
f x( ) =

x

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and lim

x 0
f x( ) . 

 

§ Solution 
 

Note:   f   is not a rational function, but it is an algebraic function, since 

f x( ) =
x

x
=

x2

x
. 

 

Remember that: x =
x, if x 0

x, if x < 0
 . 

 

Then, 

  

f x( ) =
x

x
=

x

x
= 1, if x > 0

x

x
= 1, if x < 0

 , and 
  
f 0( )  is undefined. 

 

The graph of y = f x( )  is below. 
 

        
 

  
lim

x 0+
f x( ) = 1, 

  
lim

x 0
f x( ) = 1, and  

  
lim
x 0

f x( )  does not exist (DNE), 

due to the fact that the right-hand and left-hand limits are 

unequal. § 
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FOOTNOTES 
 

1. Limits do not require continuity. In Section 2.8, we will discuss continuity, a property of 

functions that helps our lovers run along the graph of a function without having to jump or 

hop. In Exercises 1-3, we could imagine the lovers running towards each other (one from the 

left, one from the right) while staying on the graph of   f   and without having to jump or hop, 

provided they were placed on appropriate parts of the graph. Sometimes, the “run” requires 

jumping or hopping. Let 

   

f x( ) =
0, if x is a rational number x( )
x, if x is an irrational number x ;  really, x \( )

 . 

It turns out that 
  
lim
x 0

f x( ) = 0 . 

 

2. Misconceptions about limits.  

See “Why Is the Limit Concept So Difficult for Students?” by Sally Jacobs in the Fall 2002 

edition (vol.24, No.1) of The AMATYC Review, pp.25-34. 

• Students can be misled by the use of the word “limit” in real-world contexts. For example, a 

speed limit is a bound that is not supposed to be exceeded; there is no such restriction on 

limits in calculus.  

• Limit values can sometimes be attained. For example, if a function   f   is continuous at 

 x = a  (see Examples 1-3), then the function value takes on the limit value at  x = a . 

• Limit values do not have to be attained. See Examples 7 and 8. 
 

Observations: 

• The dynamic view of limits, which involves ideas of motion and “approaching”  

(for example, our lovers), may be more accessible to students than the static view preferred 

by many textbook authors. The static view is exemplified by the formal definitions of limits 

we will see in Section 2.7. The dynamic view greatly assists students in transitioning to the 

static view and the formal definitions. 

• Leading mathematicians in 18
th
- and 19

th
-century Europe heatedly debated ideas of limits. 

 

3. Multivariable calculus. When we go to higher dimensions, there may be more than two 

possible approaches (not just left-hand and right-hand) when analyzing limits at a point! 

Neighborhoods can take the form of disks or balls. 
 

4. An example where a left-hand limit exists but not the right-hand limit.  

Let 

  

f x( ) =
x + x 1+ x( )

x
sin

1

x
=

x sin
1

x
,         if x < 0

2 + x( )sin
1

x
,   if x > 0

 . 

 

 

Then, 
  

lim
x 0

f x( ) = 0 , which can be proven by the Squeeze (Sandwich) Theorem in  

Section 2.6. However, lim
x 0+

f x( )  does not exist (DNE).  

See William F. Trench, Introduction to Real Analysis (free online at: 

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF), p.39. 


