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® To define and find average
rates of change

® To define the derivative as a
rate of change

® To use the definition of
derivative to find derivatives
of functions

® To use derivatives to find
slopes of tangents to curves
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Average and Instantaneous Rates of Change:
The Derivative

O Application Preview

In Chapter 1, “Linear Equations and Functions," we studied linear revenue functions and defined
the marginal revenue for a product as the rate of change of the revenue function. For linear rev-
enue functions, this rate is also the slope of the line that is the graph of the revenue function. In
this section, we will define marginal revenue as the rate of change of the revenue function, even
when the revenue function is not linear.

Thus, if an oil company's revenue (in thousands of dollars) is given by

R=100x —x2, x=0

where x is the number of thousands of barrels of oil sold per day, we can find and interpret the
marginal revenue when 20,000 barrels are sold (see Example 4).

We will discuss the relationship between the marginal revenue at a given point and the slope
of the line tangent to the revenue function at that point. We will see how the derivative of the rev-
enue function can be used to find both the slope of this tangent line and the marginal revenue.

For linear functions, we have seen that the slope of the line measures the average rate of
change of the function and can be found from any two points on the line. However, for a
function that is not linear, the slope between different pairs of points no longer always gives
the same number, but it can be interpreted as an average rate of change. We use this con-
nection between average rates of change and slopes for linear functions to define the aver-
age rate of change for any function.
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The average rate of change of a function
y = f(x) from x = a to x = b is defined by
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@ EXAMPLE 1 Total Cost
Suppose a company’s total cost in dollars to produce x units of its product is given by
C(x) = 0.01x> + 25x + 1500

Find the average rate of change of total cost for (a) the first 100 units produced (from x = 0
to x = 100) and (b) the second 100 units produced.
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Figure 9.18

Solution
(a) The average rate of change of total cost from x = 0 to x = 100 units is
C(100) — C(0) _ (0.01(100)* + 25(100) + 1500) — (1500)
100-0 100
_ 4100 — 1500 2600
- 100 100

= 26 dollars per unit

(b) The average rate of change of total cost from x = 100 to x = 200 units is
C(200) — C(100) _ (0.01(200)* + 25(200) + 1500) — (4100)
200 — 100 100

6900 — 4100 _ 2800
100 100

= 28 dollars per unit

@ EXAMPLE 2 Elderly in the Work Force

Figure 9.18 shows the percents of elderly men and of elderly women in the work force in
selected census years from 1890 to 2000. For the years from 1950 to 2000, find and inter-
pret the average rate of change of the percent of (a) elderly men in the work force and (b)
elderly women in the work force. (¢) What caused these trends?

Elderly in the Labor Force, 1890-2000
(labor force participation rate; figs. for 1910 not available)
80.0% B Men
70.0% ] Women
60.0%

68.3 63.1
556 540

iggzﬂ 418 414

A 0
30.0% 303 24.8
200% 19.3 17.6 18.6
10.0% 76 8.3 73 73 6.1 7.8 10.3 10.0 8.2 8.4 10.0
0.0%

1890 1900 1920 1930 1940 1950 1960 1970 1980 1990 2000
Source: Bureau of the Census, U.S. Department of Commerce

Solution
(a) From 1950 to 2000, the annual average rate of change in the percent of elderly men
in the work force is

Change in men’s percent  18.6 — 41.4  —228 0.456 .
Change in years T 2000 — 1950 50 oo percentperyedt

This means that from 1950 to 2000, on average, the percent of elderly men in the
work force dropped by 0.456% per year.
(b) Similarly, the average rate of change for women is
Change in women’s percent ~ 10.0 — 7.8 2.2

= =—=0.044 t
Change in years 2000 — 1950 50 pereent pet year

In like manner, this means that from 1950 to 2000, on average, the percent of elderly
women in the work force increased by 0.044% each year.

(c) In general, from 1950 to 1990, people have been retiring earlier, but the number of
women in the work force has increased dramatically.



Instantaneous Rates of
Change: Velocity

Figure 9.19

9.3 Average and Instantaneous Rates of Change: The Derivative @® 611

Another common rate of change is velocity. For instance, if we travel 200 miles in our car
over a 4-hour period, we know that we averaged 50 mph. However, during that trip there
may have been times when we were traveling on an Interstate at faster than 50 mph and
times when we were stopped at a traffic light. Thus, for the trip we have not only an aver-
age velocity but also instantaneous velocities (or instantaneous speeds as displayed on the
speedometer). Let’s see how average velocity can lead us to instantaneous velocity.
Suppose a ball is thrown straight upward at 64 feet per second from a spot 96 feet
above ground level. The equation that describes the height y of the ball after x seconds is

y = f(x) = 96 + 64x — 16x2

Figure 9.19 shows the graph of this function for 0 = x = 5. The average velocity of
the ball over a given time interval is the change in the height divided by the length of time
that has passed. Table 9.4 shows some average velocities over time intervals beginning at

x = 1.
y =96 + 64x — 16x2

160

128 A

96

64

32 1

TABLE 9.4 Average Velocities

Time (seconds) Height (feet) Average Velocity (ft/sec)
Beginning Ending Change (Ax) Beginning Ending Change (Ay) (Ay/Ax)
1 2 1 144 160 16 16/1 =16
1 1.5 0.5 144 156 12 12/0.5 = 24
1 1.1 0.1 144 147.04 3.04 3.04/0.1 =304
1 1.01 0.01 144 144.3184 0.3184 0.3184/0.01 = 31.84

In Table 9.4, the smaller the time interval, the more closely the average velocity approx-
imates the instantaneous velocity at x = 1. Thus the instantaneous velocity at x = 1 is closer
to 31.84 ft/s than to 30.4 ft/s.

If we represent the change in time by h, then the average velocity from x = 1 to
x = 1 + h approaches the instantaneous velocity at x = 1 as h approaches 0. (Note that &
can be positive or negative.) This is illustrated in the following example.

@ EXAMPLE 3 Velocity

Suppose a ball is thrown straight upward so that its height f(x) (in feet) is given by the
equation

f(x) = 96 + 64x — 16x2
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where x is time (in seconds).

(a) Find the average velocity from x = 1 to x = 1 + A.
(b) Find the instantaneous velocity at x = 1.

Solution
(a) Let h represent the change in x (time) from 1 to 1 + h. Then the corresponding
change in f(x) (height) is
S+ h) = f(1) = [96 + 64(1 + h) — 16(1 + h)*] — [96 + 64 — 16]
=96 + 64 + 64h — 16(1 + 2h + h?) — 144
=16 + 64h — 16 — 32h — 16h>
= 32h — 16h?
The average velocity V,, is the change in height divided by the change in time.

y = FLE B =)

h
32 — 1612

N h

=32 — 16k

(b) The instantaneous velocity V is the limit of the average velocity as h approaches 0.

V= lim V,, = lim(32 — 16)

h—0

= 32 ft/s

Note that average velocity is found over a time interval. Instantaneous velocity is usu-
ally called velocity, and it can be found at any time x, as follows.

Velocity Suppose that an object moving in a straight line has its position y at time x given by
y = f(x). Then the velocity of the object at time x is

.S+ h) — f)

A

Ve h

provided that this limit exists.

The instantaneous rate of change of any function (commonly called rate of change) can
be found in the same way we find velocity. The function that gives this instantaneous rate
of change of a function fis called the derivative of f.

Derivative If fis a function defined by y = f(x), then the derivative of f(x) at any value x,
denoted f(x), is

Ja+h) — f&)

fix) = lim b

if this limit exists. If f'(c) exists, we say that f is differentiable at c.

The following procedure illustrates how to find the derivative of a function y = f(x) at
any value x.
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Derivative Using the Definition

Procedure

Example

To find the derivative of y = f(x) at any value x:
1. Let & represent the change in x from x to x + h.
2. The corresponding change in y = f(x) is

fx+ h) — fx)

Find the derivative of f(x) = 4x2.
1. The change in x from x to x + & is h.
2. The change in f(x) is

&+ h) — f(x) = 4(x + h)?> — 4x?

= 4(x* + 2xh + h?) — 4x?
= 4x2 + 8xh + 4h? — 4x?

= 8xh + 4h?
+ h) — + h) — 8xh + 4h?
3. Form the difference quotient w and 3. fx 2 fx) _ X .
S+ h) — fx)

o fet )~ f) S , .
4. Find lim —— to determine f’(x), the 4. f'(x) = lim
h—0 h h—0 h

derivative of f(x). fx) = /15% (8x + 4h) = 8x

Note that in the example above, we could have found the derivative of the function
f(x) = 4x? at a particular value of x, say x = 3, by evaluating the derivative formula at that
value:

f'(x)=8x so f'(3)=28(3) =24
In addition to f’(x), the derivative at any point x may be denoted by

Yoy Lyw b D, f(x)

-0 , ——J(), Dyy, or D.f(x

dx Y dx Y

We can, of course, use variables other than x and y to represent functions and their
derivatives. For example, we can represent the derivative of the function defined by
p = 2q*> — 1 bydp/dq.

e Checkpoint 1. Find the average rate of change of f(x) = 30 — x — x2 over [1, 4].

2. For the function y = f(x) = x2 — x + 1, find
+ h) —
@) S+ h) = ) by L&D /@

h
foe+ m) — f)
h

© @ = lim @ £

In Section 1.6, “Applications of Functions in Business and Economics,” we defined the
marginal revenue for a product as the rate of change of the total revenue function for the
product. If the total revenue function for a product is not linear, we define the marginal rev-
enue for the product as the instantaneous rate of change, or the derivative, of the revenue
function.
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Marginal Revenue Suppose that the total revenue function for a product is given by R = R(x), where x is
the number of units sold. Then the marginal revenue at x units is

R(x + h) — R(x)

MR = R'(x) = lim 3

provided that the limit exists.

Note that the marginal revenue (derivative of the revenue function) can be found by
using the steps in the Procedure/Example table on the preceding page. These steps can also
be combined, as they are in Example 4.

Q EXAMPLE 4 Revenue (Application Preview)

Suppose that an oil company’s revenue (in thousands of dollars) is given by the equation
R=R(x) =100x —x2, x=0
where x is the number of thousands of barrels of oil sold each day.

(a) Find the function that gives the marginal revenue at any value of x.
(b) Find the marginal revenue when 20,000 barrels are sold (that is, at x = 20).

Solution
(a) The marginal revenue function is the derivative of R(x).

. R(x+h) — Rx)
lim ———

R/()C) - h—0 h

~ [100(x + k) — (x + h)?] — (100x — x?)
= lim

h—0 h

. 100x + 100k — (x2 + 2xh + h%) — 100x + x2
= h

100h — 2xh — h?

= lim ——— ="M i (100 — 2x — k) = 100 — 2x

h—0 h h—0

Thus, the marginal revenue function is MR = R'(x) = 100 — 2x.
(b) The function found in (a) gives the marginal revenue at any value of x. To find the
marginal revenue when 20 units are sold, we evaluate R'(20).

R'(20) = 100 — 2(20) = 60

Hence the marginal revenue at x = 20 is $60,000 per thousand barrels of oil. Because
the marginal revenue is used to approximate the revenue from the sale of one additional
unit, we interpret R'(20) = 60 to mean that the expected revenue from the sale of the
next thousand barrels (after 20,000) will be approximately $60,000. [Note: The actual
revenue from this sale is R(21) — R(20) = 1659 — 1600 = 59 (thousand dollars).]

Tangent to a Curve  As mentioned earlier, the rate of change of revenue (the marginal revenue) for a linear rev-
enue function is given by the slope of the line. In fact, the slope of the revenue curve gives
us the marginal revenue even if the revenue function is not linear. We will show that the
slope of the graph of a function at any point is the same as the derivative at that point. In
order to show this, we must define the slope of a curve at a point on the curve. We will
define the slope of a curve at a point as the slope of the line tangent to the curve at the
point.



Figure 9.20
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In geometry, a tangent to a circle is defined as a line that has one point in common
with the circle. (See Figure 9.20(a).) This definition does not apply to all curves, as Figure
9.20(b) shows. Many lines can be drawn through the point A that touch the curve only at
A. One of the lines, line /, looks like it is tangent to the curve.

y

(a) (b)

We can use secant lines (lines that intersect the curve at two points) to determine the
tangent to a curve at a point. In Figure 9.21, we have a set of secant lines sy, s,, 53, and s,
that pass through a point A on the curve and points Q;, Q,, O3, and Q4 on the curve near
A. (For points and secant lines to the left of point A, there would be a similar figure and
discussion.) The line [ represents the tangent line to the curve at point A. We can get a
secant line as close as we wish to the tangent line / by choosing a “second point” Q suffi-
ciently close to point A.

As we choose points on the curve closer and closer to A (from both sides of A), the
limiting position of the secant lines that pass through A is the tangent line to the curve at
point A, and the slopes of those secant lines approach the slope of the tangent line at A.
Thus we can find the slope of the tangent line by finding the slope of a secant line and tak-
ing the limit of this slope as the “second point” Q approaches A. To find the slope of the
tangent to the graph of y = f(x) at A(xy, f(x;)), we first draw a secant line from point A to
a second point Q(x; + h, f(x; + h)) on the curve (see Figure 9.22).

O(x; 7 h, fCx, + )

A(xl’f(xl))

}/'(,\" + h) = f(x,)

Figure 9.21 Figure 9.22

The slope of this secant line is

_ SO + h) — fGx)

As Q approaches A, we see that the difference between the x-coordinates of these
two points decreases, so i approaches 0. Thus the slope of the tangent is given by the
following.
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Slope of the Tangent

Figure 9.23

The slope of the tangent to the graph of y = f(x) at point A(xy, f(x)) is
SO + h) — fx)

m =
h—0 h

if this limit exists. That is, m = f'(x;), the derivative at x = x;.

@ EXAMPLE 5 Slope of the Tangent
Find the slope of y = f(x) = x? at the point A(2, 4).

Solution

The formula for the slope of the tangent to y = f(x) at (2, 4) is
o fQ R - Q)
m=f@ = lim p

Thus for f(x) = x2, we have

/ Q@+ P -2
m=fQ) = Jim =

Taking the limit immediately would result in both the numerator and the denominator
approaching 0. To avoid this, we simplify the fraction before taking the limit.
4+ 4h+ W2 —4 i 4h + h?

m=lim——=1lim——=1lim@ + h) =4
h—0 h h—0 h h—0

Thus the slope of the tangent to y = x? at (2, 4) is 4 (see Figure 9.23).

Tangent line
m=4

The statement “the slope of the tangent to the curve at (2, 4) is 4” is frequently sim-
plified to the statement “the slope of the curve at (2, 4) is 4.” Knowledge that the slope is
a positive number on an interval tells us that the function is increasing on that interval,
which means that a point moving along the graph of the function rises as it moves to the
right on that interval. If the derivative (and thus the slope) is negative on an interval, the
curve is decreasing on the interval; that is, a point moving along the graph falls as it moves
to the right on that interval.
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@ EXAMPLE 6 Tangent Line

Given y = f(x) = 3x% + 2x + 11, find

(a) the derivative of f(x) at any point (x, f(x)).
(b) the slope of the curve at (1, 16).
(c) the equation of the line tangent to y = 3x2 + 2x + 11 at (1, 16).

Solution
(a) The derivative of f(x) at any value x is denoted by f'(x) and is

Y =0 = lim LD 0

0 h

o [Ba 2420+ h) 4+ 1] — (Bx2 + 2x + 11)
= Jim h
— 3(x2 4+ 2xh + h?) + 2x + 2h + 11 — 3x2 — 2x — 11
= h

6xh + 3h2 + 2h
= lim —————

h—0 h

lim(6x + 34 + 2)
h—0

6x + 2

(b) The derivative is f'(x) = 6x + 2, so the slope of the tangent to the curve at (1, 16) is
f(1)y=6(1)+2=28.

(c) The equation of the tangent line uses the given point (1, 16) and the slope m = 8.
Using y — y; = m(x — x;) givesy — 16 = 8(x — 1),ory = 8x + 8.

The discussion in this section indicates that the derivative of a function has several
interpretations.

Interpretations of the For a given function, each of the following means “find the derivative.”

Derivative 1. Find the velocity of an object moving in a straight line.

2. Find the instantaneous rate of change of a function.
3. Find the marginal revenue for a given revenue function.
4. Find the slope of the tangent to the graph of a function.

That is, all the terms printed in boldface are mathematically the same, and the answers to
questions about any one of them give information about the others. For example, if we know
the slope of the tangent to the graph of a revenue function at a point, then we know the
marginal revenue at that point.

Calculator 22  Note in Figure 9.23 that near the point of tangency at (2, 4), the tangent line and the func-
Note B2 tion look coincident. In fact, if we graphed both with a graphing calculator and repeatedly
zoomed in near the point (2, 4), the two graphs would eventually appear as one. Try this

for yourself. Thus the derivative of f(x) at the point where x = a can be approximated by

finding the slope between (a, f(a)) and a second point that is nearby. u
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Calculator FEEC
g VA
Note G

Differentiability and
Continuity

In addition, we know that the slope of the tangent to f(x) at x = a is defined by

o flat )~ f)
f(a)—gl_tg})—h

Hence we could also estimate f'(a)—that is, the slope of the tangent at x = a—by
evaluating

fla+ h) — fla)

W whenh = Qand h # 0

@ EXAMPLE 7 Approximating the Slope of the Tangent Line

+ h) —
(a) Let f(x) = 2x> — 6x2 + 2x — 5. Use M and two values of & to make
estimates of the slope of the tangent to f(x) at x = 3 on opposite sides of x = 3.

(b) Use the following table of values of x and g(x) to estimate g'(3).

x |1 1.9 2.7 2.9 2.999 3 3.002 3.1 4 5
g(x) | 16 43 114 108 10.513 105 10474 1018 6 -5

Solution
The table feature of a graphing utility can facilitate the following calculations.

(a) We can use 4 = 0.0001 and 2 = —0.0001 as follows:
f@3 + 0.0001) — f(3)

With 2 = 0.0001: 3=

0.0001
_ FBO0D = /) _ 0 o015
_ 00001 = 20.0012 = 20
o | ey _ B+ (=0.0001) — f(3)
With o = —0.0001:  f'(3) —0.0001
_ J@I999) —FO) _ 14908 ~ 20
—0.0001

(b) We use the given table and measure the slope between (3, 10.5) and another point
that is nearby (the closer, the better). Using (2.999, 10.513), we obtain

»—y 105 -10513  —0013 _
»— X 3-2999 0.001

12~ 2 _
g3 =7 13

Most graphing calculators have a feature called the numerical derivative (usually denoted
by nDer or nDeriv) that can approximate the derivative of a function at a point. On most
calculators this feature uses a calculation similar to our method in part (a) of Example 7
and produces the same estimate. The numerical derivative of f(x) = 2x> — 6x> + 2x — 5
with respect to x at x = 3 can be found as follows on many graphing calculators:

nDeriv(2x3 — 6x2 + 2x — 5,x,3) = 20 ]

So far we have talked about how the derivative is defined, what it represents, and how to
find it. However, there are functions for which derivatives do not exist at every value of x.
Figure 9.24 shows some common cases where f’(c) does not exist but where f'(x) exists
for all other values of x. These cases occur where there is a discontinuity, a corner, or a
vertical tangent line.
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Discontinuity \ /
~~Vertical
A tangent —Vertical

— Corner tangent
} X } x } X } x
c c c c
(a) Not differentiable (b) Not differentiable (c) Not differentiable (d) Not differentiable
atx =c¢ atx=c¢ atx =c¢ atx =c¢
Figure 9.24

Differentiability Implies
Continuity

From Figure 9.24 we see that a function may be continuous at x = ¢ even though f’(c)
does not exist. Thus continuity does not imply differentiability at a point. However, differ-
entiability does imply continuity.

If a function f is differentiable at x = ¢, then f is continuous at x = c.

@ EXAMPLE 8 Water Usage Costs

The monthly charge for water in a small town is given by
o = 18 if0=x=20
YT T 00+ 16 ifx > 20

(a) Is this function continuous at x = 207
(b) Is this function differentiable at x = 20?

Solution
(a) We must check the three properties for continuity.

1. f(x) = 18 forx = 200 f(20) = 18
2. lim f() = lim 18 =18 }
lim f(x) = lim (0.1x + 16) = 18

3. lim f() = f(20)

= lim f(x) = 18

x—20

Thus f(x) is continuous at x = 20.
(b) Because the function is defined differently on either side of x = 20, we need to test
to see whether f'(20) exists by evaluating both

o S0+ h) — f(20) oo J20 4 k) — f(20)
(1) lim and (i1) lim
h—0 h h—0" h
and determining whether they are equal.
o J20 + h) — f(20) . 18— 18
(1) lim = lim ——
h—0 h h—0 h

= lim 0=0
h—0~
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fQ0 + h) — f(20) ) [0.1(20 + h) + 16] — 18
= lim

@ iy,

h h—0+ h
0.1%
= lmm —
h—0*t |

lim 0.1 =0.1
h—0"

Because these limits are not equal, the derivative f'(20) does not exist.

o Checkpoint 3. Which of the following are given by f'(c)?
(a) The slope of the tangent when x = ¢
(b) The y-coordinate of the point where x = ¢
(c) The instantaneous rate of change of f(x) at x = ¢
(d) The marginal revenue at x = ¢, if f(x) is the revenue function
4. Must a graph that has no discontinuity, corner, or cusp at x = ¢ be differentiable at
x=c?

Calculator i We can use a graphing calculator to explore the relationship between secant lines and
Note B tangent lines. For example, if the point (a, b) lies on the graph of y = x2, then the equa-
tion of the secant line to y = x? from (1, 1) to (a, b) has the equation

b—1 b —
y— 1= (x—1, or y=
a—1 a—

1
1(x—l)+1

Figure 9.25 illustrates the secant lines for three different choices for the point (a, b).

25 25

Figure 9.25

We see that as the point (a, b) moves closer to (1, 1), the secant line looks more like the
tangent line to y = x? at (1, 1). Furthermore, (a, b) approaches (1, 1) as a — 1, and the
slope of the secant approaches the following limit.

= liml(a+ 1)=2

This limit, 2, is the slope of the tangent line at (1, 1). That is, the derivative of y = x? at
(1, 1) is 2. [Note that a graphing utility’s calculation of the numerical derivative of f(x) = x>
with respect to x at x = 1 gives f'(1) = 2.] ]



